High spin spectroscopy of ¹³⁴Cs

H. Pai^{1*}, G. Mukherjee¹, S. Bhattacharyya¹, T. Bhattacharjee¹, R. palit², A. Y. Deo², P.K.Joshi² B. S. Naidu², S. Sharma², A. Raghav², Z. Naik², A. Goswami³, S. kumar⁴, S.Sihotra⁵, D. Mehta⁶

¹Physics Group, Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, INDIA

²Deptartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, INDIA

³Nuclear and Atomic Physics Division, Saha Institute of Nuclear Physics Kolkata 700064, INDIA

⁴*Physics Department, Department of Physics, Delhi University, New Delhi, INDIA*

⁵Department of Physics, Guru Nanak Dev University, Amritsar, INDIA

⁶Department of Physics, Panjab University, Chandigarh, INDIA

* * email: haridas@veccal.ernet.in

Introduction

For the nuclei with neutron number N < 82in mass region A = 130, both the proton and the neutron Fermi level lie in the 50 - 82 sub shell space. These nuclei show a rich variety of structural phenomena [1 - 4]. Apart from spherical structure, bands based on prolate and oblate deformation, the magnetic rotational bands and chiral bands have been observed in this region. For the odd-odd nuclei in this region, the odd proton occupies the high-J, low- Ω orbital whereas, the odd neutron, lies in the upper part of the sub shell space and occupies the high-J high- Ω orbital. These two orbitals have different shape driving effect. For the N = 79 isotones in this region, the odd-proton normally lies in the positive parity $g_{7/2}$ or $d_{5/2}$ orbitals and the oddneutron lies in the positive parity $d_{3/2}$ or negative parity $h_{11/2}$ orbital. However, at moderate excitation energies, the $h_{11/2}$ unique parity orbital becomes accessible to the odd-protons as well for the heavier isotones particularly with small deformation. It is interesting to study the positive parity excited states arising out of this πh_{112} \otimes $vh_{11/2}$ configurations in the odd-odd nuclei.

Bands built on this configuration have been identified in the N = 79 isotones of Z > 55 nuclei i.e 136 La, 138 Pr, 140 Pm, 142 Eu [5 – 8] etc. The effect of different shape driving orbitals of protons and neutrons are manifested in prolate and oblate shapes respectively in these nuclei [9]. We have studied the high spin spectroscopy of 134 Cs to extend the systematic of these isotones in the neutron rich regime towards the Z = 50 spherical shell closure. The low lying states

of ¹³⁴Cs have been studied, previously, mostly by (n,γ) reactions [10]. The only level scheme of ¹³⁴Cs in heavy ion reaction has been obtained by T. Koike et al [11] with 6 HPGe detectors. However, the spin and parity assignment could not be done.

Experimental Details

Excited states of ¹³⁴Cs have been populated via the fusion-evaporation reactions ¹³⁰Te(⁷Li, 3n) at 30 MeV and ¹³⁰Te(¹¹B, α 3n) at 52 MeV at the 14-UD BARC-TIFR Pelletron at Mumbai, India. γ - γ data were taken using 7 (8 for the 2nd expt) Compton-suppressed clover HPGe detectors. A 14-element NaI(Tl) multiplicity filter was also used, in the 1st expt., to select multiplicity fold of 2 over and above the γ - γ fold in the clover detectors. The data were sorted into a 2D γ - γ matrix and analyzed by using the program RADWARE [12]. Angle dependent matrix was created for the DCO analysis to assign J^π of the excited states.

Results and Discussion

The preliminary level scheme of 134 Cs established from the present work is shown in Fig.1. The new γ rays (22 of them) have greatly extended the present level scheme of 134 Cs compared to the previous work [11]. The spin and parity assignments, shown in Fig.1, are tentative ones. The detailed analysis of the DCO matrix is in progress.

Fig. 1 Preliminary level scheme of 134 Cs obtained from this work. The * indicates the new γ -rays.

The excitation energies of the 9⁺, 10⁺ and 11⁺ states of the $\pi h_{11/2} \otimes v h_{11/2}$ configuration of the N = 79 isotones are plotted in Fig 2. With the increase in Z the proton Fermi level increases and the $\pi h_{11/2}$ becomes accessible at lower energy and hence the excitation energy of the above configuration decreases. The increase in the excitation energy for the ¹³⁴Cs (shown by dotted line) shows that the effect of Z = 50 gap started dominating.

Fig. 2 Systematic of excitation energy of $\pi h_{11/2}$ \otimes vh_{11/2} configuration of N = 79 isotones.

References

- [1] I. Ragnarsson et al., Nucl. Phys. A233, (1974) 329.
- [2] Y.S. Chen et al., Phys. Rev. C 28, (1983) 2437.
- [3] R. F. Casten and P. von Brentano, Phys. Lett. **B152**, (1985) 22.
- [4] S. Sihotra et al., Phys. Rev. C 78, (2008) 034313
- [5] M.A. Rizzutto, et al., Z. Phys. A 344 (1992) 221
- [6] G. de Angelis, et al., Z. Phys. A 347 (1993) 93.
- [7] T. Bhattacharjee et al., Nucl Phys. A 750 (2005) 199
- [8] M. Piparinen et al., Nucl. Phys. A 605 (1996) 191
- [9] L. Hildingsson et al., Phys. Rev. C 39, (1989) 471.
- [10] V. L. Alexeev et al., Nucl. Phys. A 248 (1975) 249
- [11] T. Koike et al., Phys. Rev. C 67, 044319 (2003).
- [12] D.C. Radford, Nucl. Instrum. Methods Phys. Res., Sect. A 361 (1995) 297.