The ${}^{16}O(C, 2C)^4He$ Reaction and the Nature of the Short Range C-C Interaction.

Bhushan N. Joshi,* Arun K. Jain,[†] and Y. K. Gupta, D. C. Biswas,

A. Saxena, B. V. John, L. S. Danu, R. P. Vind and R. K. Choudhury Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085.

The α -cluster knockout reaction using α beams yielded very large α -spectroscopic factors[1], orders of magnitude larger than the corresponding $(p, p\alpha)$ reactions [2]. At some what higher α energy however this anomaly disappeared [3, 4]. The explanation came forward from the finite range (FR) DWIA analysis where the α - α repulsion below 170 MeV was ascribed to the enhancement of the $(\alpha, 2\alpha)$ cross sections [5]. It was thus established that the $(\alpha, 2\alpha)$ reactions are extremely sensitive to the shorter range component of the α - α interaction. We therefore concluded that in heavy cluster knockout in the ${}^{16}O({}^{12}C, 2{}^{12}C){}^4He$ reaction, the cross section will be enhanced much more in comparison to the α -cluster knockout cross section in ${}^{16}O(\alpha, 2\alpha){}^{12}C$ reaction (due to these finite range effects) if the ${}^{12}C{}^{-12}C$ interaction is also repulsive at short distances. However, if the ${}^{12}C$ - ${}^{12}C$ interaction contains stronger attraction at short distances, as has been advocated by Wieland et al[6], then there will be no enhancement. In order to decide between these two contradicting scenarios the ${}^{16}O({}^{12}C, 2{}^{12}C)^4He$ reaction experiment was performed at 118.8 MeV at the Pelletron-LINAC facility (PLF). The Experimental details and preliminary result were presented last year[7]. The final results of this experiment are presented in Fig.1 and 2. In the summed energy spectrum of Fig.1 one can easily see the separate ground state of the struck ${}^{12}C$ as well as the excited state of either of the two ${}^{12}C$'s in the final state. Fig.2 clearly shows the typical $\ell=0$ knockout peak at 60 MeV energy sharing spectra. The peak cross section is seen to be $151(\mu b/sr^2MeV)$ which is about 15 times larger than the peak cross section in the 140 MeV ${}^{16}O(\alpha, 2\alpha){}^{12}C_{g.s}$ reaction.

We have performed the conventional Zero Range (ZR) DWIA calculations of this reaction. The beauty of the ${}^{16}O(\alpha, 2\alpha)^4He$ and ${}^{16}O({}^{12}C, 2{}^{12}C){}^{4}He$ reaction is that the optical distortions in both these reactions arise from the α -¹²C optical potentials. Therefore the optical distortion effects in these two reactions are similar. The optical distortions, however differ mainly in the (B/A)-prescription for the entrance channel, which in any way is not a very reliable prescription[2]. In the more reliable folding model prescription[1, 8] optical distortion do not differ much for the two reactions. Therefore the main difference between the (C, 2C) and $(\alpha, 2\alpha)$ arise due to the C-C and α - α knockout vertex. As the enhancement in the ${}^{16}O(\alpha, 2\alpha){}^{12}C$ reaction

FIG. 1: Summed energy spectrum for the 118.8 MeV ${}^{16}O(C, 2C){}^{4}He$.

^{*}Electronic address: bnjoshi@barc.gov.in

 $^{^{\}dagger} Electronic \ address: \ \texttt{arunjain@barc.gov.in}$

FIG. 2: Energy sharing spectrum of the (C, 2C) reaction corresponding to the knockout of the ${}^{12}C_{g.s.}$ from ${}^{16}O$.

cross section compared to the ZR-DWIA as seen to arise because of the short range α - α repulsion the similar enhancement should not be seen in the ${}^{12}C{}^{-12}C$ interaction having strong attraction at short distances as advocated by Wieland et al. The conventional ZR-DWIA calculations using entrance channel optical potential from the folding model and the B/A prescription are compared with the ${}^{16}O({}^{12}C, 2{}^{12}C)^4He$ data at 118.8 MeV. The calculated curve are normalized to the data peak value. The normalization constants are found to be 342.8 and 59.5 for the folding and B/A prescriptions respectively. In comparison to these values the theoretical value is 0.23[9]. The More reliable folding model prescription therefore indicates a 1450 times enhancement in the ${}^{16}O({}^{12}C, 2{}^{12}C){}^4He$ case much larger than even the $(\alpha, 2\alpha)$ case[8] (50 times). This clearly indicates, much against Wieland et al, that there is a hard core in the C-C interaction at least around $E_{CM}=55$ MeV. This leaves much to be looked for as to what energy the short range C-C repulsion changes to

attraction for the complete fusion of the two ^{12}C 's. Fresh (C, 2C) experiments will have to be performed at different but higher energies to identify the position at which the two ^{12}C 's will be overlapping just as it was identified from the FR-DWIA analyses of the $(\alpha, 2\alpha)$ reactions that a transition will occur in these reactions at around 168 MeV for the two α 's to fuse. The full finite range, FR-DWIA calculations for the $^{16}O(^{12}C, 2^{12}C)^4He$ reaction using $^{12}C^{-12}C$ interaction which are either purely attractive or which have a repulsive core will be presented separately.

Acknowledgments

The authors would like to thank the Department of Science and Technology, Govt. of India for supporting this work through Project Grant No. SR/S2/HER-09/2004.

References

- C. W. Wang *et al.*, Phys. Rev. C 21, 1705 (1980).
- [2] N. S. Chant and P. G. Roos, Phys. Rev. C 15, 57 (1977).
- [3] A. A. Cowley *et al.*, Phys. Rev. C 50, 2449 (1994).
- [4] G. F. Steyn *et al.*, Phys. Rev. C 59, 2097 (1999).
- [5] A. K. Jain and B. N. Joshi, Phys. Rev. Lett., published in Oct 2009.
- [6] R. M. Wieland *et al.*, Phys. Rev. Lett., 37, 1458 (1976).
- [7] B. N. Joshi *et al.*, Proc. DAE-Symp. NP 53, 377 (2008).
- [8] A. K. Jain and B. N. Joshi, Phys. Rev. C 77, 027601 (2008).
- [9] M. Ichimura *et al.*, Nucl. Phys. **A204**, 225 (1973).