Short Range α-α Repulsion and FR-DWIA Analysis of the (α, 2α) reaction on 9Be and 20Ne

Bhushan N. Joshi1 and Arun K. Jain2

1Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, INDIA

The 9Be and 20Ne nuclei are supposed to be highly α-clustered because while 9Be is a Borromean nucleus the 20Ne nucleus is having 4-nucleons outside the closed shell 16O nucleus. The same is also anticipated from the small α-separation energies for these two nuclei which are 2.4672 MeV and 4.7316 MeV respectively, in comparison the values for 16O and 12C nuclei are 7.1622 MeV, 7.367 MeV respectively. Therefore the α-bound wave functions for these nuclei are expected to extend to larger α-residual nucleus separations. Which is reflected in higher (α, 2α) reaction cross section on these nuclei which are indeed seen to be higher than the ones from 12C and 16O nuclei. The symmetric coplanar peak (α, 2α) cross section at 140 MeV on 9Be and 20Ne are seen to be 0.1 and 0.035 as compared to 0.018 and 0.01 on 12C and 16O respectively. Earlier the (α, 2α) reactions on 12C and 16O at 140 MeV analyzed with the conventional ZR-DWIA formalism indicated orders of magnitude lower cross sections. Finite range-DWIA calculations using a short range repulsive $\alpha$$\alpha$ core effective interaction however brought a good agreement between theory and experiment. In order to verify the trend seen in 12C and 16O the theory should repeat itself in 9Be and 20Ne also. We therefore performed these FR-DWIA calculations for (α, 2α) reactions on 9Be and 20Ne. Using the transition amplitude, $T_{\alpha L \Lambda}$ for A(α, 2α)B reaction in the FR-DWIA formalism the cross section can be written as,

$$\frac{d^3\sigma_{LJ}}{d\Omega_1 d\Omega_2 dE_1} = F_{\text{kin}} \cdot S_{\alpha}^{LJ} \cdot \sum_{\Lambda} |T_{\alpha L \Lambda}(\vec{k}_f, \vec{k}_i)|^2$$

where F_{kin} is a kinematic factor and S_{α}^{LJ} is the cluster spectroscopic factor. The conventional transition matrix element for the knockout reaction, $T_{\alpha L \Lambda}(\vec{k}_f, \vec{k}_i)$ is

*Electronic address: bnjoshi@barc.gov.in
†Electronic address: arunjain@barc.gov.in
The distorted waves \(\chi_0^- \left(\vec{k}_{1A}, \vec{r}_{1B} \right) \chi_2^- \left(\vec{k}_{2B}, \vec{R}_{2B} \right) t_{12} \left(\vec{r}_{12} \right) \)

where, \(t_{12} \left(E, \vec{r} \right) = e^{-ikz} V \left(\vec{r} \right) \Psi_{12}^* \left(\vec{r} \right) \equiv \sum_{L=0,1,2,...} t_L(E, r) P_L(\vec{r}) \)

The distorted waves \(\chi_0, \chi_1 \) and \(\chi_2 \) are evaluated using the optical potentials for the \(A, A-1 \) and \(A-2 \) pairs. Finally all the relative coordinates are expressed in terms of \(\vec{r}_{12} (\equiv \vec{r}) \) and \(\vec{R}_{2B} (\equiv \vec{R}) \). While using the ZR-DWIA the transition matrix element, \(T_{f_i} \) was factorized into integrals over \(\vec{r} \) and \(\vec{R} \) separately. The same is not possible, when one uses the full finite range \(t_{12}(\vec{r}_{12}) \) [1], due to the presence of optical distortions. This is because in the FR-DWIA formalism the chosen relative coordinates \(\vec{r} \) and \(\vec{R} \) get coupled through the distorted waves \(\chi_0^{(-)}(\vec{k}_{1A}, \vec{r}_{1B}) \) and \(\chi_1^{(-)}(\vec{k}_{1A}, \vec{r}_{1B}) \).

For the evaluation of \(T_{f_i}^0 \) the distorted waves, \(\chi(\vec{k}, \vec{r}) \) and \(\varphi_{L^\omega}(\vec{R}) \) and \(t_{12}(\vec{r}) \) were evaluated on the mesh of the spherical polar coordinates, \(r, \theta, \phi \) and \(R, \Theta, \Phi \). The final result of \(T_{f_i} \) is obtained by doing a 6-dimensional integration over the mesh of \(\vec{r} \) and \(\vec{R} \) coordinates.

The results of the FR-DWIA computations for \(^9\text{Be} \) and \(^{20}\text{Ne} \), normalized to the data peak values, are presented in Figs.1-2. Although the shapes of the energy sharing distributions (\(\sigma_{(\alpha,2\alpha)}(E_1) \) vs \(E_1 \)) are not very satisfactory the curves obtained from the attractive, \(t_{\alpha\alpha}(A)(\vec{r}) \) are much closer to the data.

This arises because the \(t_{\alpha\alpha}(A)(\vec{r}) \)'s peak close to \(r=0 \), which simulates the zero range behavior and hence the results are similar to the ZR-DWIA results. The repulsive core, \((R+A)^2 \) results are seen to be at much variance. This could arise due to the uncertainty in the choice of the repulsive core \(\alpha-\alpha \) potential parameters. Most important conclusion however, can be drawn by comparison (bold face entries) of the absolute peak cross section values from the FR-DWIA calculations with the data and the derived \(S_{\alpha} \)-values from theory in Table 1.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(E_\alpha) (MeV)</th>
<th>(\sigma_{\alpha,2\alpha}(\text{Peak})/\text{Sr}^2\text{MeV})</th>
<th>Expt.</th>
<th>(S_{\alpha}) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^9\text{Be}(\alpha,2\alpha)^7\text{He})</td>
<td>197</td>
<td>575 (\mu)b</td>
<td>26.4 (\mu)b</td>
<td>6.3 (\mu)b</td>
</tr>
<tr>
<td>(^{12}\text{C}(\alpha,2\alpha)^8\text{Be})</td>
<td>200</td>
<td>19.9 (\mu)b</td>
<td>552 (\mu)b</td>
<td>380 (\mu)b</td>
</tr>
<tr>
<td>(^{16}\text{O}(\alpha,2\alpha)^{12}\text{C})</td>
<td>140</td>
<td>92 (\mu)b</td>
<td>2.5 (\mu)b</td>
<td>18.5 (\mu)b</td>
</tr>
<tr>
<td>(^{20}\text{Ne}(\alpha,2\alpha)^{16}\text{O})</td>
<td>140</td>
<td>73.6 (\mu)b</td>
<td>1.9 (\mu)b</td>
<td>32 (\mu)b</td>
</tr>
</tbody>
</table>

This Table I: Comparison of \((\alpha, 2\alpha) \) cross sections from FR-DWIA calculations and experimental data on \(^9\text{Be}, ^{12}\text{C}, ^{16}\text{O} \) and \(^{20}\text{Ne} \) at various energies and spectroscopic factors \((S_{\alpha}) \) derived from the FR-DWIA calculations and theory. Comparison of Bold face entries is emphasized.