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Introduction
A fascinating challenge in the study of

superheavy nuclei is the quest for island
of stability where the magic numbers next
to Z=82 and N=126 may be located. The
earliest calculation of 1960’s established that
the center of island of stability for superheavy
elements (SHEs) lies at Z=114, N=184.
Recently, the microscopic mean field models,
applied in the region of SHEs, predict Z=120
and N=172 or 184 as the next magic numbers
[1, 2]. Also, Z=126, N=184 have been used/
predicted as magic numbers [3]. The goal
of present work is to identify which one of
these three Z (=114, 120 or 126) is a better
shell closure with N=184. To this end we use
the hot fusion reaction 48Ca+238U→286112∗,
with measured evaporation residue (ER),
fusion-fission (ff) and quasi-fission (qf) cross-
sections, as a tool and analyse it on the basis
of the dynamical cluster-decay model (DCM)
of Gupta and collaborators (see, e.g., [4] and
earlier references therein) where the effects of
deformation up to hexadecapole deformation
β4 and “compact” orientations θc (θc=720

for 238U) are included. The DCM gives a
good description of the ER (the light-particle
emission), ff and qf (equivalently, capture)
decay channels, and their excitation functions
within a single parameter description, the
neck length parameter ∆R.

The Methodology
The compound nucleus (CN) decay cross-

section in DCM, in terms of partial waves, is

σ =
π

k2

ℓmax
∑

ℓ=ℓmin

(2ℓ+1)P0P ; k =

√

2µEcm

~2
(1)

with reduced mass µ=[A1A2/(A1+A2)]m, and
center of mass energy Ecm. P is the
WKB penetrability, with first turning point

Ra = R1(α1, T ) + R2(α2, T ) + ∆R(T ). P0 is
the solution of stationary Schrödinger equa-
tion in mass asymmetry coordinate η =(A1-
A2)/(A1+A2), i.e., P0(Ai) ∝|ψ(η(Ai))|

2,
i=1,2, with mass fragmentation potential

VR(η, T ) =

2
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i=1

[
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]
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[

δUi

]

exp(−
T 2

T0
2
)

+Ec(T ) + VP (T ) + Vℓ(T ). (2)

Here, VLDM (T ) is T-dependent liquid drop
energy [5], with its constants at T=0 re-fitted
to give the experimental binding energies B,
defined within the Strutinsky renormalization
procedure as B = VLDM (T = 0) + δU , with
the shell corrections δU calculated in the
“empirical method” of Myers and Swiatecki
[3]. The magic numbers for superheavy region
in the “empirical method” [3] are taken as
Z=126, N=184. Evidently, the constants of
VLDM (T = 0) need to be refitted to give the
experimental B, for the magicity at Z=126
changed to that at Z=120 or 114, respectively.
Then, P and P0 are obtained for the three
sets of magic numbers, and cross-sections
calculated for the three decay processes of
ER, ff and qf. Then, the excitation functions
are fitted within a single parameter ∆R.

Calculations and Results
First of all, in Fig. 1, only the evaporation

residue σER is fitted for any one set of magic
numbers and, using the parameter ∆R so ob-
tained, the corresponding σER’s are calculated
for other two sets of magic numbers. Clearly,
the σER always remains the largest for magic
set Z=126, N=184, independent of E∗, and
the lowest for Z=114, N=184. However, in
Fig. 2, when the fitting procedure is carried
out simultaneously for all the three processes
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FIG. 1: ER as a function of CN E∗ for 48Ca+238U→
286112∗ reaction, calculated for the parameter of

DCM fitted to data, respectively, for Z=126, 120 or 114, N=184 in the panels (a),(b) and (c).
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FIG. 2: Same as for Fig. 1, but now for ER, ff and qf. The qf is independent of magic shells.

of ER, ff and qf, the cross-sections are the
largest and nearly indistinguishable for Z=120
and 126, N=184. This preliminary result sug-
gests that Z=120 or 126 with N=184 are the
equally strong magic shells (largest shell cor-
rections), and Z=114, N=184 are the weakest
magic shells.
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