Charm baryon magnetic moments in χCQM$_{\text{config}}$

Neetika Sharma, Harleen Dahiya, and P. K. Chatley

Department of Physics, Dr.B.R. Ambedkar National Institute of Technology, Jalandhar - 144011, INDIA

During the last few years, there have been a revival of interest in charm baryon spectroscopy with more than a dozen new states being identified and several new theoretical investigations being undertaken. The CLEO, BABAR and Belle Collaborations [1] observed Λ^+_c, Ξ_c and Ω_c excited charmed baryons states. These experiments have inspired new investigations in the heavy flavor sector. One of the important parameters in the heavy baryons spectroscopy is their magnetic moment, which gives valuable information about the internal structure of hadrons.

Recently, it has been shown that χCQM [2] with spin-spin generated configuration mixing (χCQM$_{\text{config}}$) [3, 4] is able to give a satisfactory explanation of the various low energy phenomenon [5–8]. Also, χCQM$_{\text{config}}$ when coupled with the “quark sea” polarization and orbit angular momentum of the “quark sea” (referred as Cheng and Li Mechanism) [5] is able to give a fit to the baryon magnetic moments and gives a satisfactory explanation of the Coleman Glashow sum rule [9]. In this paper, we extend the Cheng and Li mechanism to the charmed baryons in the χCQM$_{\text{config}}$.

The basic process in the χCQM is the internal emission of a Goldstone Boson (GB) by a constituent quark, which further splits into a $q\bar{q}$ pair as $q_\pm \rightarrow GB + q'_\mp \rightarrow (q\bar{q})' + q'_\mp$, where $q\bar{q}'$ constitute the “quark sea” [4, 5]. The effective Lagrangian describing interaction between quarks and GBs can be expressed as $\mathcal{L} = g_{15}(\Phi) \cdot \bar{q} q$, where the field Φ includes the GBs and g_{15} is the coupling constant. In χCQM, the magnetic moment of a baryon receives contribution from the valence quarks, “quark sea” and its orbital angular momentum and can be written as

$$\mu(B)_{\text{total}} = \mu(B)_{\text{val}} + \mu(B)_{\text{sea}} + \mu(B)_{\text{orbit}}, \quad (1)$$

where $\mu(B)_{\text{val}}$ and $\mu(B)_{\text{sea}}$ represent the the contribution of the valence quark and contribution due to the chiral fluctuation of constituent quark q' in the “quark sea”, whereas the term $\mu(B)_{\text{orbit}}$ correspond to the contribution due to the orbital angular momentum of the “quark sea”.

The valence quark and the sea quark contributions, in terms of quarks magnetic moments and spin polarizations, can be written as

$$\mu(B)_{\text{val}} = \sum_{q=u,d,s,c} \Delta q_{\text{val}} \mu_q, \quad (2)$$

$$\mu(B)_{\text{sea}} = \sum_{q=u,d,s,c} \Delta q_{\text{sea}} \mu_q, \quad (3)$$

where, $\mu_q = \frac{e_q}{2m_q} (q = u, d, s, c)$ is the quark magnetic moment, with e_q and M_q as the electric charge and the mass for the quark q, respectively. The valence quark spin polarizations Δq_{val}, following references [3–5] are defined as $\Delta q_{\text{val}} = q_+ - q_-$, where q_{\pm} are the number of valence quarks, obtained from the spin structure of a baryon. The sea quark spin polarization Δq_{sea} can be evaluated by considering the effect of change in spin structure and making substitution for every valence quark by $q_\pm \rightarrow \sum P_q q_{\pm} + |\psi(q_{\pm})|^2$, where $\sum P_q$ is the probability of emission of GBs from a quark and $|\psi(q_{\pm})|^2$ is the probability of transforming a q_\pm quark [3].

The contribution of the orbital angular momentum $\mu(B)_{\text{orbit}}$ of the “quark sea” to the magnetic moment of the baryon expressed in terms of the valence quark polarizations and contribution of the magnetic moment of the spin flip process $(q_\pm \rightarrow q_{\mp} + \text{GB})$, following Cheng and Li [3, 5], is defined by

$$\mu(B)_{\text{orbit}} = \sum_{q=u,d,s,c} \Delta q_{\text{val}} \mu(q_+ \rightarrow q_-), \quad (4)$$
where
\[
\mu(q_+ \to q_-) = \frac{\langle q_+ \rangle_{\text{GB}}}{2M_q} + \frac{\langle q_- \rangle_{\text{GB}}}{2M_{\text{GB}}}.
\]
Here, \(\langle q_+ \rangle\) and \(\langle q_- \rangle\) are the orbital angular momenta and masses of quark and GBs, respectively. The orbital magnetic moment of each process is then multiplied by the probability of such a process to take place to yield the magnetic moment due to all the transitions.

The \(\chi\)CQM\(_{\text{config}}\) involves five parameters \(a, a\alpha^2, a\beta^2, a\gamma^2\) and \(\beta > \gamma\). These parameters are fixed by using the spin polarizations and quark distribution functions as input with their latest values [1]. The best fit parameters are \(a = 0.12, \alpha \simeq 0.45, \beta = 0.21\) and \(\gamma = 0.11\). For evaluating the contribution of GBs masses, we have used their on shell mass value in accordance with several other similar calculations.

Table I gives the magnetic moments of the charmed baryons in units of nucleon magneton.

\(\mu_{\Sigma^c}\)	2.52	2.1 ± 0.1	2.07 ± 0.1	0.40 ± 0.1	2.00
\(\mu_{\Xi^c}\)	0.52	0.6 ± 0.1	0.44 ± 0.1	0.02 ± 0.1	0.26
\(\mu_{\Omega^c}\)	1.48	1.6 ± 0.2	1.18 ± 0.2	0.06 ± 0.1	1.49
\(\mu_{\Lambda^c}\)	0.76	0.70 ± 1.9	0.19 ± 1.9	0.19 ± 1.9	0.70
\(\mu_{\Xi^c}\)	1.24	1.08 ± 0.3	0.03 ± 0.3	0.19 ± 0.3	1.24
\(\mu_{\Omega^c}\)	1.01	0.87 ± 0.4	0.04 ± 0.4	0.01 ± 0.4	0.84
\(\mu_{\Lambda^c}\)	0.44	0.40 ± 0.06	0.42 ± 0.06	0.02 ± 0.06	0.42
\(\mu_{\Xi^c}\)	0.50	0.50 ± 0.5	0.45 ± 0.5	0.01 ± 0.5	0.45

References