Nonstatistical fluctuation in 16O-Ag/Br collisions at 200A GeV/c

M. K. Ghosh1, P. K. Haldar2a, S. K. Manna2, A. Mukhopadhyay1 and G. Singh3

1 Physics department, University of North Bengal, Siliguri – 734013, Darjeeling, West Bengal, India
2 Dinhaba College, Dinhaba – 736135, Cooch Behar, West Bengal, India
3 Department of Computer & Information Science, SUNY at Fredonia, Fredonia, New York 14063, USA

*e-mail: prabirkhaldar@yahoo.com

Presence of non-statistical fluctuations in the density distribution of singly charged particles produced in 16O-Ag/Br interactions at an incident momentum of 200A GeV/c, has been identified and characterized with the help of the intermittency technique [1]. Nuclear photo-emulsion data on 16O-Ag/Br events have been used in the analysis [2]. In each of the 280 events present in the sample, the projectile nucleus underwent complete fragmentation. The average shower track multiplicity $<n_s>$ = 119.26 ± 3.59. The one-dimensional analysis of data is confined to pseudorapidity (η) and azimuthal angle (φ) spaces. We have calculated and plotted the Scaled Factorial Moments (F_q) of different orders ($q = 2$–6) both in the η-space (Fig.1) and in the φ-space (Fig.2). A power law type scaling behavior: $F_q = (\delta M)^{-q\Phi}$ at phase space resolution δM, characterizes the intermittency phenomenon. This scaling property is verified from the linear variations of $ln<F_q>$ against lnM in both η and φ space, where M is the phase space partition number. For each q the best linear behavior is obtained by the Pearson’s r^2 coefficient.

In η-space the experimental results have been compared with the FRITIOF prediction [3] and in φ-space with the independent emission model. The intermittency exponent Φ_q is a measure of self-similarity in the density fluctuations beyond statistical origin. They are evaluated and there values are quoted in Table 1. In almost all cases the r^2 values are close to unity, confirming goodness of fit. In φ-space the Φ_q values are consistently higher than those in the η-space, indicating that, the observed intermittency effects are not independent of the basic phase space variable considered.

<table>
<thead>
<tr>
<th>q</th>
<th>Φ_2</th>
<th>Φ_3</th>
<th>Φ_4</th>
<th>Φ_5</th>
<th>Φ_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0289</td>
<td>0.939</td>
<td>0.0333</td>
<td>0.984</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0779</td>
<td>0.935</td>
<td>0.0972</td>
<td>0.951</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1534</td>
<td>0.930</td>
<td>0.1925</td>
<td>0.945</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2534</td>
<td>0.927</td>
<td>0.3172</td>
<td>0.947</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.3771</td>
<td>0.915</td>
<td>0.4618</td>
<td>0.918</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

To examine whether or not the intermittency effects are merely due to contributions coming out of lower order correlation functions, the normalized exponents defined as: $\zeta_q = \Phi_q/C_2$ for $q \geq 2$, and three particle correlation in terms of the normalized slopes as $\zeta_q^{(3)} = (q - 2)\zeta_2 - (q - 3)\zeta_3$ are introduced in [4]. Both types of normalized exponents were evaluated and are plotted against q in Fig. 3 and Fig. 4, respectively. A more or less linear dependence of ζ_q as well as of $\zeta_q^{(3)}$ with q can be observed. From this analysis it cannot be unambiguously concluded that all correlations for $q \geq 4$, can be understood in terms of a two and three particle correlations.

For a self-similar cascade mechanism the underlying probability density is described by a Log-Levy type of distribution function [5] that is characterized by a stability index (μ) considered to be a measure of the degree of multifractality within a physically allowed limit $0 \leq \mu \leq 2$. Under the Levy-law approximation, the ratio of
anomalous dimensions is expected to follow a relation: $\beta_q = \left(\frac{d_q}{d_2} \right) (q - 1) = (q^2 - q) / (2^\mu - 2)$.

These values of β_q are not at all close to the universally accepted value $\nu = 1.304$, necessary for a thermal phase transition to take place.

In Fig. 5 our results on the anomalous dimensions (d_q) obtained from intermittency have been shown graphically. For the η-space: $\mu = 1.802$ and for φ-space: $\mu = 1.903$. In both cases $\mu > 1$, which indicate presence of wild non-Poisson type fluctuations in the density of particles.

The behavior of, $\lambda_q = \Phi_q/(q+1)$, as a function of q [5] can be utilized as another tool to check occurrence of non-thermal phase transition in particle production process. The plot is given in Fig.7, where no definite minimum indicates absence of non-thermal phase transition.

The presence analysis therefore indicates presence of weak intermittency in 1-dim, that cannot be explained by the simulated data. No definite conclusion can be drawn regarding the observed effects.

Acknowledgement: PKH and SM gratefully acknowledge the DST, Govt. of India, for financial assistance through its FAST Track Scheme for Young Scientists.

References: