First results of Pion Interferometry in Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV

Debasish Das (for the STAR Collaboration)1a*

1Physics Department, University of California, Davis, CA 95616, USA.

Introduction
Numerous experimental observables have been proposed as signatures of Quark Gluon Plasma (QGP) creation in heavy ion collisions [1]. The increased entropy is expected to lead to an increased spatial extent and duration of particle emission, thus providing a significant probe for the QGP phase transition [2]. The information about the space-time structure of the emitting source can be extracted with intensity interferometry techniques. This method, popularly known as Hanbury-Brown Twiss (HBT) correlations, was originally developed to measure angular sizes of distant stars [3]. Previous femtoscopic measurements at RHIC in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV, 200 GeV [4] and comparative studies of Au+Au and Cu+Cu in 62.4 GeV and 200 GeV [5] provided various interesting insights. However, detailed comparisons with smaller colliding systems like Cu+Cu and energies like 22.4 GeV are required in order to understand the dynamics of the source during freeze-out. In this paper we present a systematic analysis of two-pion interferometry in Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV using the Solenoidal Tracker at RHIC (STAR) detector at the Relativistic Heavy Ion Collider (RHIC).

The STAR detector [5], which has a large acceptance and is azimuthally symmetric, consists of several detector sub-systems and a solenoidal magnet. In the present study, the central Time Projection Chamber (TPC) provided the main information used for track reconstruction.

Analysis Method and Correlation function in π interferometry

Experimentally, the two-particle correlation function is obtained from the ratio,

$$ C(\vec{q}, \vec{k}) = \frac{A(\vec{q}, \vec{k})}{B(\vec{q}, \vec{k})}, \quad \text{(1)} $$

where $A(\vec{q}, \vec{k})$ is the distribution of particle pairs with relative momentum $\vec{q} = \vec{p}_1 - \vec{p}_2$ and average momentum $\vec{k} = (\vec{p}_1 + \vec{p}_2)/2$ from the same event, and $B(\vec{q}, \vec{k})$ is the corresponding distribution for pairs of particles taken from different events [4, 5]. The correlation function is normalized to unity at large \vec{q}. In the mixed events, each particle in a given event is mixed with all particles from other events, within a collection of 10 similar events. Similar events are selected within the centrality bin and further binned to have primary vertex z positions within 10 cm of the collisional vertex of 30 cm. With the availability of high statistics data and development of new techniques, it has become possible to have a three-dimensional decomposition of \vec{q} [5], providing better insight into the collision geometry.

The relative momentum \vec{q} can be decomposed according to the Bertsch-Pratt (also known as “out-side-long”) convention [5]. The relative momentum \vec{q} is decomposed into the variables along the beam direction (q_{long}), parallel (q_{out}) to the transverse momentum of the pair $\vec{k}_T = (\vec{p}_{1T} + \vec{p}_{2T})/2$, and perpendicular ($q_{side}$) to q_{long} and q_{out}. In addition to the correlation arising from quantum statistics of two identical particles, correlations can also arise from two-particle final state interactions. For identical pions, the effects of strong interactions are negligible, but the long range Coulomb repulsion causes a suppression of the measured correlation function at small \vec{q}.

*Electronic address: debasish@rcf.rhic.bnl.gov
*Presently associated with Saha Institute of Nuclear Physics, Kolkata, India.
In this analysis, we follow the same procedure as was used in the previous analysis of Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV [4]. For an azimuthally-integrated analysis at midrapidity in the longitudinal comoving system (LCMS), the correlation function in Eq. (1) can be decomposed as [5]:

$$ C(q_{\text{out}}, q_{\text{side}}, q_{\text{long}}) = (1 - \lambda) + $$

$$ \lambda K_{\text{coul}}(q_{\text{inv}})(1 + e^{-q_{\text{out}}^2 R_{\text{out}}^2 - q_{\text{side}}^2 R_{\text{side}}^2 - q_{\text{long}}^2 R_{\text{long}}^2}) $$

(2)

where K_{coul} is to a good approximation the squared nonsymmetrized Coulomb wave function integrated over a Gaussian source (corresponding to the LCMS Gaussian radii $R_{\text{out}}, R_{\text{side}}, R_{\text{long}}$). Assuming particle identification is perfect and the source is purely chaotic, λ represents the fraction of correlated pairs emitted from the collision.

We assume a spherical Gaussian source of 3 fm [5] for Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV. For the pion interferometry analysis, the particle identification conditions are $|n\sigma_{p}| < 2, |n\sigma_{K}| > 2, and |n\sigma_{K}| > 2$, and the average transverse momentum ($k_T = (|p_{\text{side}} + p_{\text{long}}|)/2$) is required to fall in one of 4 bins corresponding to [150,250] MeV/c, [250,350] MeV/c, [350,450] MeV/c and [450,600] MeV/c. The results are presented and discussed as a function of k_T as well as $m_T (= \sqrt{k_T^2 + m_{\pi}^2})$ in each of those bins for 0-10% and 10-60% centrality. The estimated systematic errors are less than 10% for all radii in the 0-10% and 10-60% centrality bin for all k_T bins, similar to those in Refs. [4, 5].

Figure 1 gives the results for R_{out}, R_{side}, R_{long}, λ and the ratio, $R_{\text{out}}/R_{\text{side}}$. The three femtoscopic radii increase with increasing centrality for Cu+Cu 22.4 GeV as expected, whereas the values of the λ parameter and the $R_{\text{out}}/R_{\text{side}}$ ratio exhibit no clear centrality dependences in the two centralities of Cu+Cu 22.4 GeV and ratio $R_{\text{out}}/R_{\text{side}}$~1 for all other RHIC energies.

References