First results of Pion Interferometry in Cu+Cu collisions at $\sqrt{s_{\rm NN}} = 22.4$ GeV

Debasish Das (for the STAR Collaboration)^{1a*} ¹Physics Department, University of California, Davis, CA 95616, USA.

Introduction

Numerous experimental observables have been proposed as signatures of Quark Gluon Plasma(QGP) creation in heavy ion collisions [1]. The increased entropy is expected to lead to an increased spatial extent and duration of particle emission, thus providing a significant probe for the QGP phase transition [2]. The information about the space-time structure of the emitting source can be extracted with intensity interferometry techniques. This method, popularly known as Hanbury-Brown Twiss (HBT) correlations, was originally developed to measure angular sizes of distant stars [3]. Previous femtoscopic measurements at RHIC in Au+Au collisions at $\sqrt{s_{\rm NN}} = 130$ GeV, 200 GeV [4] and comparative studies of Au+Au and Cu+Cu in 62.4 GeV and 200 GeV [5] provided various interesting insights. However, detailed comparisons with smaller colliding systems like Cu+Cu and energies like 22.4 GeV are required in order to understand the dynamics of the source during freeze-out. In this paper we present a systematic analysis of two-pion interferometry in Cu+Cu collisions at $\sqrt{s_{\rm NN}}$ = 22.4 GeV using the Solenoidal Tracker at RHIC (STAR) detector at the Relativistic Heavy Ion Collider (RHIC).

The STAR detector [5], which has a large acceptance and is azimuthally symmetric, consists of several detector sub-systems and a solenoidal magnet. In the present study, the central Time Projection Chamber (TPC) provided the main information used for track reconstruction.

Analysis Method and Correlation function in π interferometry

Experimentally, the two-particle correlation function is obtained from the ratio,

$$C(\vec{q}, \vec{k}) = \frac{A(\vec{q}, \vec{k})}{B(\vec{q}, \vec{k})} \quad , \tag{1}$$

where $A(\vec{q}, \vec{k})$ is the distribution of particle pairs with relative momentum $\vec{q} = \vec{p_1} - \vec{p_2}$ and average momentum $\vec{k} = (\vec{p_1} + \vec{p_2})/2$ from the same event, and $B(\vec{q}, \vec{k})$ is the corresponding distribution for pairs of particles taken from different events [4, 5]. The correlation function is normalized to unity at large \vec{q} . In the mixed events, each particle in a given event is mixed with all particles from other events, within a collection of 10 similar events. Similar events are selected within the centrality bin and further binned to have primary vertex z positions within 10 cm of the collisional vertex of 30 cm. With the availability of high statistics data and development of new techniques, it has become possible to have a threedimensional decomposition of \vec{q} [5], providing better insight into the collision geometry.

The relative momentum \vec{q} can be decomposed according to the Bertsch-Pratt (also known as "out-side-long") convention [5]. The relative momentum \vec{q} is decomposed into the variables along the beam direction (q_{long}) , parallel (q_{out}) to the transverse momentum of the pair $\vec{k}_T = (\vec{p}_{1\text{T}} + \vec{p}_{2\text{T}})/2$, and perpendicular (q_{side}) to q_{long} and q_{out} . In addition to the correlation arising from quantum statistics of two identical particles, correlations can also arise from two-particle final state interactions. For identical pions, the effects of strong interactions are negligible, but the long range Coulomb repulsion causes a suppression of the measured correlation function at small \vec{q} .

^{*}Electronic address: debasish@rcf.rhic.bnl.gov; ^aPresently associated with Saha Institute of Nuclear Physics, Kolkata, India.

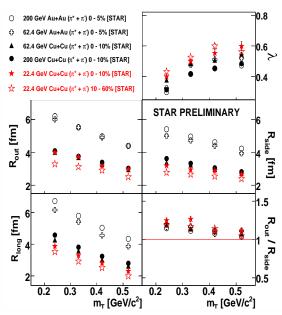


FIG. 1: (Color Online) Femtoscopic parameters vs. m_T for two centralities 0-10% and 10-60% for Cu+Cu collisions at $\sqrt{s_{\rm NN}} = 22.4$ GeV. Only statistical errors are shown. Compared with Au+Au and Cu+Cu results of 200 and 62.4 GeV.

In this analysis, we follow the same procedure as was used in the previous analysis of Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV [4]. For an azimuthally-integrated analysis at midrapidity in the longitudinal comoving system (LCMS), the correlation function in Eq. (1) can be decomposed as [5]:

$$C(q_{\text{out}}, q_{\text{side}}, q_{\text{long}}) = (1-\lambda)+$$

$$\lambda K_{\text{coul}}(q_{\text{inv}}) (1 + e^{-q_{\text{out}}^2 R_{\text{out}}^2 - q_{\text{side}}^2 R_{\text{side}}^2 - q_{\text{long}}^2 R_{\text{long}}^2}),$$
(2)

where K_{coul} is to a good approximation the squared nonsymmetrized Coulomb wave function integrated over a Gaussian source (corresponding to the LCMS Gaussian radii R_{out} , $R_{\rm side}, R_{\rm long}$). Assuming particle identification is perfect and the source is purely chaotic, λ represents the fraction of correlated pairs emitted from the collision.

We assume a spherical Gaussian source of 3 fm [5] for Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV. For the pion interferometry analysis, the particle identification conditions are $|n\sigma_{\pi}| <$ 2, $|n\sigma_p| > 2$, and $|n\sigma_K| > 2$, and the average transverse momentum $(k_T = (|\vec{p}_{1T} + \vec{p}_{2T}|)/2)$ is required to fall in one of 4 bins corresponding to [150,250] MeV/c, [250,350] MeV/c, [350,450] MeV/c and [450,600] MeV/c. The results are presented and discussed as a function of $k_{\rm T}$ as well as $m_{\rm T} \ (= \sqrt{k_{\rm T}^2 + m_{\pi}^2})$ in each of those bins for 0-10% and 10-60% centrality. The estimated systematic errors are less than 10% for all radii in the 0-10% and 10-60% centrality bin for all $k_{\rm T}$ bins, similar to those in Refs. [4, 5].

Figure 1 gives the results for $R_{\rm out}$, $R_{\rm side}$, $R_{\rm long}$, λ and the ratio, $R_{\rm out}/R_{\rm side}$. The three femtoscopic radii increase with increasing centrality for Cu+Cu 22.4 GeV as expected, whereas the values of the λ parameter and the $R_{\rm out}/R_{\rm side}$ ratio exhibit no clear centrality dependences in the two centralities of Cu+Cu 22.4 GeV and ratio $R_{\rm out}/R_{\rm side} \sim 1$ for all other RHIC energies.

References

- J. Adams *et al.* [STAR Collaboration], Nucl. Phys. A **757**, 102 (2005).
- [2] D. H. Rischke and M. Gyulassy, Nucl. Phys. A 608, 479 (1996).
- [3] R. Hanbury Brown and R. Q. Twiss, Phil. Mag. 45, 663 (1954). R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956).
- [4] J. Adams *et al.* [STAR Collaboration], Phys. Rev. C **71**, 044906 (2005).
- [5] B. I. Abelev *et al.* (STAR Collaboration), Phys. Rev. C 80, 024905 (2009), arXiv: 0903.1296 [nucl-ex].