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1. Introduction
Neutron stars are born when a massive star
runs out of nuclear fuel and undergoes a su-
pernova explosion in which the core of the star
collapses to form a compact object, contain-
ing about one and a half times of solar mass
inside a sphere of radius about ten kilometers
[1]. Due to various perturbations, radial and
non-radial waves travel through the star inte-
rior, that make the surface oscillate. The non-
radial oscillations of neutron stars make them
promising sources of detectable gravitational
waves. The structure and oscillation modes of
neutron stars are governed by the equation of
state of the hadronic matter. The study of
the vibrational motion of neutron stars has be-
come an important tool to constrain the equa-
tion of state of nuclear matter. In section (2)
we present the formalism of calculating nor-
mal mode frequencies of non-radial oscillations,
and in (3) the results.
2. Formulation
The bulk motions of nuclear matter can be de-
scribed in terms of the basic variables of the
hydrodynamics, namely, the bulk density, ρ,
the mean velocity, Vi, and the stress tensor Pij .
The governing equations are written as [2],
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where U is the internal potential energy. As-
suming that the neutron star is a gravitation-
ally bound nuclear matter of uniform density
and the local equilibrium and large-scale mo-
tions of neutron star are dominated by new-
tonian gravity, the potential energy U can be

known from Poisson’s equation,

∇2U = 4πGρ0 , (4)

where G is the gravitational constant and ρ0

is the density. The gravitational potential, in
equilibrium, can be written for inside and out-
side region of the star as,
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where R is the radius of the star. Considering
the distribution of the stresses inside the star
to be isotropic and the surface to be without
stress,

Pij = δijP0(r) , P0(R) = 0 , (7)

the local equilibrium pressure, P0(r), can be
determined by the equation,

∇P0(r) = −ρ0∇U in
0 , (8)

the solution of which gives,
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3
πGρ2

0 r
2 + PF , (9)

where PF is the pressure at core. Radius of
neutron star can be obtained from (7),

P0(R) = 0, ⇒ R =
1
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√
3PF

2πG
, (10)

consequently mass of the star can be found as,
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) 3
2

, (11)

where the core pressure, PF , can be known
from the equation of state given the average
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density ρ0 which is the only parameter of this
model.

To calculate the fundamental nodes of oscil-
lations of highly incompressible nuclear mat-
ter, variational method [3] can be applied to
rewrite the equations (1) - (4) as,
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where δVi is the perturbed velocity of collective
flow and δPij is small fluctuation in the stress
tensor. Multiplying (13) by δVi and integrat-
ing over the volume gives the energy balance
equation as,
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We represent δVi, and δU in the form,

δVi = ξL
i (~r) α̇L(t) , δU = φL(~r)αL(t) , (17)

where L denotes the multipole order. The am-
plitude, αL, gives spheroidal deformations of
the star surface, and ξL

i (~r) is the instantaneous
displacements given by

ξL
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d
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and the function φL on the star’s surface has
the form [3],

φL = −4πGρ0R
2
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Inserting (17) into (14), the fluctuations in the
stress tensor can be written as,
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Substituting (17) and (20) in (16), we get the
equation of normal vibrations,

MLα̈L(t) +KLαL(t) = 0 , (21)

where ML and KL are inertia and stiffness pa-
rameters respectively. The fundamental fre-
quencies, ω2

L = KL/ML, of the non-radial vi-
brations of a neutron star can be computed as,
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where ω2
F = PF /(ρ0R

2) and ω2
G = 4πGρ0/3.

The basic frequency of quantum-elastic vi-
brations, ωF , depends on incompressibility,
density and radius of the star, whereas and
gravitation-elastic vibrations ωG depends on
the density alone.
3. Results
We take the equation of state of nuclear matter
from [4] where it is calculated in the framework
of non-relativistic Brueckner formalism using
Bonn potential and medium modification of
meson parameters. In the following table
we present numerical estimates for the mass
M (normalized to the solar mass, M�), the
radius R (in Km) of a neutron star and
frequencies (in 104Hz) of quadrupole(ω2),
octupole(ω3) and hexadecapole(ω4) vibra-
tions corresponding to the average density ρ0

(in fractions of the normal nuclear density ρN ).

ρ0 M R ω2 ω3 ω4

1.1 1.05 11.75 1.51 2.20 2.75
1.3 1.13 11.43 1.61 2.32 2.94
1.5 1.22 11.13 1.81 2.60 3.18
2.0 1.40 10.58 2.05 2.95 3.65
2.5 1.57 10.02 2.34 3.35 4.11
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