M3Y effective nucleon-nucleon interaction and the relativistic mean field theory

Bir
Bikram Singh¹,* S. K. Patra¹,[†] and Raj K. Gupta^{2‡}

¹Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India and

²Department of Physics, Panjab University, Chandigarh 160014, India

Introduction

The microscopic heavy-ion scattering potential of interest is obtained in double folding model [1], by using an effective nucleonnucleon (NN) interaction (say, M3Y plus a zero-range pseudo-potential) folded over the matter densities of the interacting nuclei. In the following, we dwell on the simplified (spinand isospin-independent, S=T=0) M3Y effective NN interaction [1], which is widely and succesfully used in a number of applications.

The relativistic mean field (RMF) theory [2] is now established to be one of the most successful approaches for the accurate description of nuclear properties. The basic ansatz of the RMF theory is a Lagrangian density whereby nucleons are described as free Dirac particles, which interact via the exchange of sigma (σ) , omega (ω) , and rho (ρ) mesons, and also the photons (A). The σ (ω) meson produces long-range attraction (short-range repulsion), whereas the ρ meson is required for the isospin dependence of the nuclear properties.

In a recent study, starting from a nonrelativistic bare potential and by employing a G-matrix formalism, Serra *et al.* [3] derived an effective interaction in the nuclear medium that depends on its density, and established a connection between the RMF models and bare NN interaction. Interestingly, the medium- and long-range components of the above derived effective interaction can be described to a good extent by an effective, density-dependent, relativistic oneboson-exchange potential (OBEP). For a good fit of the OBEP to the G-matrix potential, it is found essential to include the $\sigma, \omega, \delta, \rho$ and π meson fields. Also, the tensor force of the bare NN interaction, though through renormalization, is shown essential for explaining the dominance of the σ -field for attraction, with the σ -mesons mass $m_{\sigma} \approx 480$ MeV. In the process, the masses and coupling strengths of the fields were also exrtacted, which are found consistent with the available RMF parameterizations. In the light of this work [3], in this paper, we look for a comparison between the well known M3Y effective NN interaction [1] and one obtained from the RMF-based relevant fields with its fitted masses (ranges) and coupling constants (strength parameters).

Methodology

The M3Y effective NN interaction, obtained from a fit of the G-matrix elements based on Reid-Elliott soft-core NN interaction [1], in an oscillator basis, is the sum of three Yukawa's (M3Y) with ranges 0.25 fm for a mediumrange attractive part, 0.4 fm for a short-range repulsive part and 1.414 fm to ensure a longrange tail of the one-pion exchange potential (OPEP). The widely used form of the M3Y effective interaction $v_{eff}(r)$ is given by

$$v_{eff}(r) = 7999 \frac{e^{-4r}}{4r} - 2134 \frac{e^{-2.5r}}{2.5r}.$$
 (1)

Note that Eq. (1) represents the spin- and isospin-independent parts of the central component of the effective NN interaction, and that the OPEP contribution is absent here.

Similarly, following Ref. [3], the spin- and isospin-independent (i.e., pure central) part of the total OBEP can be written from Eq. (22) and Table II in [3] on the basis of the σ - and

^{*}Electronic address: birbikram.singh@gmail.com

[†]Electronic address: patra@iopb.res.in

[‡]Electronic address: rajkgupta.chd@gmail.com

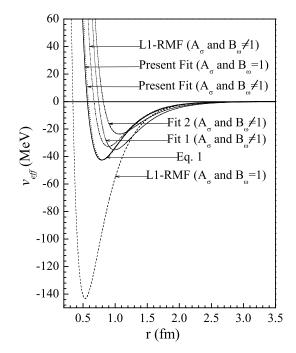


FIG. 1: Comparison of phenomenological M3Y effective interaction [Eq. (1)] with one from relevant (σ, ω) RMF fields, [Eq. (2)], and other calulations stated in the text.

 ω -meson fields of the RMF Lagrangian, as

$$v_{eff}(r) = \frac{g_{\omega}^2}{4\pi} B_{\omega} \frac{e^{-m_{\omega}r}}{r} - \frac{g_{\sigma}^2}{4\pi} A_{\sigma} \frac{e^{-m_{\sigma}r}}{r}.$$
 (2)

Note that Eq. (2) can be related to the phenomenological M3Y effective NN interaction in Eq. (1). In Eq. (2), m_{ω} , m_{σ} and g_{ω} , g_{σ} are, respectively, the masses and coupling constants of the ω and σ mesons. The coefficients $B_{\omega} = (1 + \frac{1}{2}(\frac{m_{\omega}}{M})^2)$ and $A_{\sigma} = (1 - \frac{1}{4}(\frac{m_{\sigma}}{M})^2)$ are dependent on relativistic corrections $(\frac{m_i}{M})^2$, $i = (\omega, \sigma)$, which is important for the field masses m_i becoming comparable to nucleon mass M.

Calculations and Discussions

Fig. 1 illustrates the comparison between the M3Y effective NN interaction (Eq. (1), solid line) and its equivalent presentation, Eq. (2), based on RMF considerations involving

TABLE I: The values of m_{σ} and m_{ω} (in MeV) alongwith g_{σ} and g_{ω} from different works, and the present fits to the Eq. (2).

the present nee to the Eq. (=).				
			g_{σ}	g_{ω}
				12.60
				13.41
Fit 2 $(A_{\sigma} \text{ and } B_{\omega} \neq 1)$ [3]	480	738	09.07	13.06
Present Fit $(A_{\sigma} \text{ and } B_{\omega}=1)$	493	789	7.374	11.287
Present Fit $(A_{\sigma} \text{ and } B_{\omega} \neq 1)$	542	783	09.59	11.30

the coupling constants g_{ω} , g_{σ} and masses m_{ω} and m_{σ} . The fitted masses and strength parameters of the fields are presented in Table I (marked Present Fit) for the choices (A_{σ} and $B_{\omega}=1$) and (A_{σ} and $B_{\omega}\neq1$), compared with the results obtained for use of the RMF model [2] with the linear parameter set L1 [for both (A_{σ} and $B_{\omega}=1$) and (A_{σ} and $B_{\omega}\neq1$), keeping the masses and coupling constants same] and the ones fitted in Ref. [3] (Fit 1 and Fit 2, both for (A_{σ} and $B_{\omega}\neq1$)).

It is evident from Fig. 1 that the phenomenological M3Y effective interaction [Eq. (1) can be best fitted only to its equivalent RMF-based representation [Eq. (2)], and that too better for the case of A_{σ} and $B_{\omega}=1$. However, the m_{σ} mass seems to be more favourable (close to 550 for RMF-L1) for A_{σ} and $B_{\omega} \neq 1$. Also, the m_{ω} mass is exactly equal to the experimental value of 783 MeV for A_{σ} and $B_{\omega} \neq 1$. The results of all other calculations deviate considerably from the effective M3Y interaction. Also, the $m_{\sigma}=480$ MeV in [3] is farther from the RMF-L1 result. Apparently, it is relevant as well as intersting to study further the observed differences in order to understand the link between the RMF phenomenology and the effective NN interaction.

References

- G. R. Satchler and W. G. Love, *Phys. Reports* 55 (1979) 183.
- [2] See, e.g., S. K. Patra and C. R. Prahraj, *Phys. Rev. C* 44 (1991) 2552.
- [3] M. Serra et al., Prog. Theo. Phys. 113 (2005) 1009.