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The study of shape phase transition of 

atomic nuclei has been a subject of great 
interest. According to the Bohr-Mottelson 
unified collective model [1], the energy 
spectrum of the ground band of well deformed 
even Z-even N nuclei are given by the rotation 
formula: 
 
E=AI(I+1).   (1) 
 
The coefficient A incorporates the inverse 
moment of inertia. A host of well deformed 
nuclei follow this pattern well. If the nucleus is 
spherical, it executes harmonic vibrations and 
the level energies are given by the expression: 
 
E=aI.    (2) 
 
In reality, most nuclei lie in between these two 
limiting symmetries and are called shape 
transitional, and deviate from either of the 
above two limiting expressions. The yrast level 
energies in these nuclei can be described 
through the composite expression: 
 
E(I)=a I(I+1) + b I.  (3) 
 
The two terms represent the rotational and the 
vibrational parts. The energy of any yrast state 
of the nucleus is a mixture of the two. The ratio 
of the first part (ROTE) to the total state energy 
E(21) is a measure of the degree of deformation 
of the nucleus.  

A corresponding relation is used in 
the form of a two parameter Hamiltonian in the 
Interacting Boson Approximation Model; IBA-
1 [2]: 
 
HIBM =  nd + k QQ.  (4) 
 
Here the first term represents the boson energy 
and corresponds to the vibration term in (3). 
The second term corresponds to the quadrupole 

interaction of the bosons and corresponds to 
the rotation term in (3). In the language of 
quantum mechanics, each term represents a 
Hamiltonian and is diagonal in its own basis.  
 
H= a H1 + b H2.   (5) 
 
Since the total Hamiltonian is the sum of the 
two, any of its eigenstate can be expanded in 
the basis of either. For example, IBA model 
employs the U(5) basis. In principle one can 
also use the SU(3) as a basis, as attempted by 
Rosensteel [3]. 
 In experiment, in all nuclei, spherical 
vibrators, deformed rotors and the shape 
transitional, the level energy ratios RI/2 in the 
ground state band are related to the ratio R4/2, 
as noted very early by Mallmann [4]. From Eq. 
(3), this relation is determined in the form of 
Eq. (6)  
 
RI/2 = R4/2 I(I-2)/8–I(I-4)/4. (6) 

 
This relation can also be derived from the 
Mallmann plot of RI/2 versus R4/2 (see Fig. 1). 
The ratio of the two sides of the similar 
triangles in the figure yields Eq. 6. Thus the 
linear relation (6) is model independent. We 
shall illustrate its application to a few special 
cases.  

For R4/2=2.5, Eq. (6) yields the ratio 
R6/2=9/2. The O(6) symmetry corresponds to 
the -unstable soft rotor, with  as the O(5) 
quantum number. The energies in the yrast 
band (I=2) are given by [2]: 
 
 E=B (+3) + CI(I+1).   (7) 
 
B and C are constant for a given nucleus. 
 
Eq. (7) yields the relation of RI/2 with R4/2: 
 
R=RI/2=R4/2(-1)/2 - (-2). (8) 
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Fig. 1. The linear relation of RI/2 to R4/2. 

 
For the energy ratio R4/2=2.5, the typical value 
for O(6) symmetry, Eq. (8) yields R6/2=9/2, the 
same as given by Eq. (6).  

Next look at the recently identified 
E(5) critical symmetry [5] point, which lies on 
the U(5)-O(6) transition class. Here the energy 
ratio R4/2 is 2.2 and the energy ratio R6/2 is 3.6. 
This is also given by the relation (6)! Next we 
consider the critical symmetry point X(5) [6], 
which lies on the U(5) to SU(3) transition class 
and occurs at the edge of the deformed region. 
From the analytical solution, here the energy 
ratio R4/2 is predicted to be 2.9 and the energy 
ratio R6/2 is predicted to be 5.45 [6], which 
again is given approximately (within 95%) by 
Eq. (6). 

For I=8, 10 also, the results similar to 
the above are obtained. 

Thus the important observation in 
the present study is that the relation (6), which 
we shall call a linear relation, holds good 
universally. It incorporates the results of all the 
five symmetries:- the vibrational, rotational, -
unstable soft rotor, the II-order phase transition 
critical point symmetry point E(5) and 
approximately for the I-order phase transition 
critical symmetry point X(5) predictions of the 
ground band energy ratios. In fact the same 
relation serves as reference to all regular bands, 
ground state band and higher excited bands in 
even Z-even N nuclei. The same also holds true 
for the regular bands of odd-A nuclei, or odd-
odd nuclei. 

A word of caution is necessary here. 
In experiment, the dependence of RI/2 on R4/2 
may differ slightly from the predicted ratio in 
Eq. (6), as happens for any of the above 
analytical solutions also. In fact the deviations 
carry their own message; viz. the rotation–
vibration interaction introduces the spin 
dependence. For example, in softly deformed 
nuclei, in the context of the microscopic 
treatment in the DPPQ model [7], some spin 
dependence of the K-admixture of the given 
state is predicted [8].  
 The linear relation (6) discussed here 
is an extension of the Mallmann’s observation 
[4] for the energy relation in the ground band. 
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