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One century ago Rutherford treated the
Coulomb scattering classically and obtained
the well known Rutherford scattering formula
[1]. Quantum mechanical derivation some
time later obtained the Coulomb scattering
amplitude giving rise to the same Rutherford
scattering cross section. Surprising though the
classical and quantum mechanical derivations
agree remarkably. It is even more surpris-
ing that even after the lapse of the century
there is no derivation of the t-matrix effec-
tive interaction for the Coulomb scattering[2].
The wide range of applicability and utility of
Coulomb scattering tC-matrix effective inter-
action needs no introduction.

Another remarkable point of the scattering
(1

r potential) is the independence of the scat-
tering on the impact parameter and hence the
angular momentum. In the conventional eval-
uation of the tC -effective interaction one has
to incorporate some cut off in the integration
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FIG. 1: Coulomb scattering using various radil
cutoffs in the t-matrix.
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(limitation of partial waves as well as range)
which leads to highly fluctuating cross section
( Seen in Fig. 1 for 105 MeV 12C-12C Ruther-
ford scattering) and hence this procedure is of
little or no use.

We derive the Coulomb t-matrix using the
well known quantum mechanical scattering
amplitude, fc(θ) where θ is the angle of scat-
tering in the center of mass system.

fC(θ) =
−η

2k sin2 θ
2

exp(−iη ln(sin2 θ

2
) + 2iσ0)

(1)
where η is the dimensionless Sommerfield

parameter

η =
Z1Z2e

2

ℏ
=

µZ1Z2e
2

ℏ2K
(2)

σ0= Coulomb phase shift for ℓ=0 is given
by, σ0=Γ(1 + ıγ)/(Γ(1 − ıγ)

Now we have the transition operator Tfi re-
lated to the scattering amplitude f(θ) as,

Tfi = −2πℏ
2

µ
fc(θ). (3)

We can express θ the scattering an-
gle in terms of momentum transfer, q as
q=2k sin θ/2 where, k=

√

2µE/ℏ2 .

So that as θgoes from 0 to pi, q goes from
0 to 2k.

Therefore,

Tfi(θ)=Tc(q)=
−4πηℏ

2k
q2 exp[−ıη ln(q2/4k2)+2ıσ0]

This is the t-matrix effective interaction in
momentum space. It can be very nicely eval-
uated because it behaves smoothly from q =
0 to ∞

For the exchange terms however the θ → π-
θ and the corresponding sin(θ/2) changes to
cos(θ/2) leading to q2 → (k2 − q2/4.). The



corresponding expression for the symmetriz-
ing term, T S

C (q) is,

T S
C (q) = − 4πηℏ

2k

(k2 − q2)/4

exp[−ıη(1 − q2/4k2) + 2ıσ0] (4)

This seen to be blowing up when one goes
from q=0 to ∞ for taking its Fourier trans-
form. If one remembers the fact that we are
interested for θ=0 to π/2 i.e q from o to

√
2k,

in which region it behaves nicely. Therefore we
fitted T S

C (q) by a function which nicely repro-

duces its behaviour between 0 and
√

2k and
outside

√
2k it goes down to zero smoothly.

We found that it can be nicely fitted by Saxon-
Woods and its derivative form as follows.

TC(q) = tR(q) + ıtI(q) (5)

where,

tR(q) = tSW {1 + exp[(q − qR)/aR]}−1 +

4tSWD exp{(q−qD/aD)}{1+exp[(q−qD)/aD}−2

and

tI(q) = tISWD exp{(q − qID)/aID}
{1 + exp[q − qID)/aID]}−2

The various parameters have been worked
out for Coulomb scattering at the C-C vertex
for 16O(C, 2C)4He reaction at various ener-
gies. Interesting trends are seen: the strengths
decreasing with energy, the radii increasing
with energy and the diffusivities increasing
suddenly with energy but staying constant
over a large stretch of energy. Fourier trans-
form of these TC(q) leads to the t-matrix effec-
tive Coulomb interaction, tC(r) as a function
of separation distance, r between the changed
particles (see Fig.(3))

Symmetrized and antisymmetrized t-matrix
effective Coulomb interactions can thus be
worked out in simple forms.

Few of the numerous applications of the
present formalism are in the X-ray production

cross section from electron knockout, find-
ing out the scattering wave functions at dis-
tances where nuclear interaction vanished, the
Coulomb scattering pertaining to the lower en-
ergy astrophysics application etc.
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FIG. 2: Real depth of the derivative Saxon-Woods
expansion of the exchange t-matrix T S

C (q) as a
function of energy.
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FIG. 3: Imaginary depth of the derivative Saxon-
Woods expansion of the exchange t-matrix T S

C (q)
as a function of energy.
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