J/ψ enhancement in heavy ion collisions: Statistical and Kinetic approach

P. Shukla, D. K. Mishra, and R. K. Choudhury

Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, INDIA

Introduction

At Large Hadron Collider (LHC), collisions of Pb+Pb ions at energy $\sqrt{s_{NN}} = 2.76$ TeV would create strongly interacting matter at very high temperatures, where a phase transition from hadronic phase to quark gluon plasma (QGP) is expected. The J/ψ particles are the richest and most interesting probes of QGP [1]. The SPS data show that J/ψ is suppressed [2, 3], while PHENIX (at RHIC) data are explained by accounting for both partial suppression and enhancement scenarios [4]. At LHC, a large number of initially produced $c\bar{c}$ pairs could lead to an important source of final charmonium, where coalescence mechanism may lead to enhancement instead of suppression of J/ψ . Here we discuss J/ψ enhancement using both kinetic and statistical models and compare them.

Kinetic Formation Model

In this model [5, 6], the total number of J/ψ produced in a deconfined medium are governed by two factors; (i) the formation related to the recombination of c and \bar{c} , (ii) the dissociation of J/ψ induced by collision with the gluons of the medium.

In the present study we assume the charm quark pairs and J/ψ in a region of color deconfinement populated by the thermal density of gluons. The time evolution of J/ψ can be written as:

$$\frac{dN_{J/\psi}}{d\tau} = \lambda_F N_c N_{\bar{c}} [V(\tau)]^{-1} - \lambda_D N_{J/\psi} \rho_g$$
(1)

The first term of Eq.1, is related to "formation rate", where as the second term is related to "dissociation rate". In Eq.1, $\tau =$ proper time, $\lambda_F = \langle \sigma_F v_{rel}^{c,\bar{c}} \rangle$ and $\lambda_D = \langle \sigma_D v_{rel}^{g,J/\psi} \rangle$ are the formation and dissociation rates respectively.

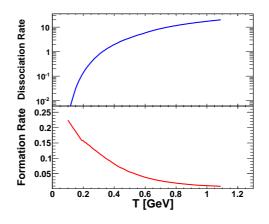


FIG. 1: Dissociation (upper) and formation (lower) rate of J/ψ due to interaction with thermal gluons vs T.

TABLE I: Input	parameters
----------------	------------

* *		
Initial time (τ_0)	0.5 fm	
Radius of the nuclei (R)	7.1 <i>fm</i> 170 MeV	
Freeze-out temp (T_f)	$170 { m MeV}$	
Initial number of J/ψ	0.0	

The dissociation (formation) rate of J/ψ as a function of temperature (T) is shown in Fig.1 upper (lower) panel. The upper panel of Fig.2 shows the number of J/ψ expected as a function of initial number of unbound charm quarks $N_{c\bar{c}}$ with different initial temperature (300-700 MeV) using kinetic model, where dissociation and formation rates taken from Fig. 1 using thermal distributions of charms. The lower panel shows the number of J/ψ with fixed formation rate (0.008), where the charm p_T distribution has been taken from perturbative QCD calculation. The parameters which have been used in this calculation are listed in table I.

Avilable online at www.sympnp.org/proceedings

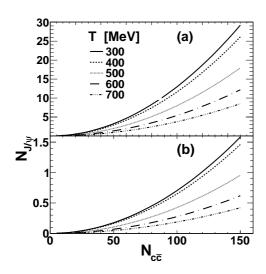


FIG. 2: $N_{c\bar{c}}$ dependence of $N_{J/\psi}$ using Kinetic model.

Statistical Hadronization Model

To study the charm production, we have used the statistical model which has been discussed in [8, 9]. The number density of the particles i in an equilibrated systems can be described as:

$$n_i = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{e^{(E_i(p) - \mu_i)/T} \pm 1} \qquad (2)$$

The chemical potential $\mu_i = \mu_B B_i + \mu_S S_i + \mu_{I_3} I_i^3 + \mu_C C_i$. The values of μ 's are taken from Ref.[9]. The number of J/ψ mesons are then enhanced relative to the thermal model prediction by a factor γ_c^2 :

$$N_{J/\psi} = \gamma_c^2 N_{J/\psi}^{thermal} = 4 \frac{n_{J/\psi}^{thermal} n_{ch}}{n_{open}^2} \frac{N_{c\bar{c}}^2}{N_{ch}}$$
(3)

where, $\gamma_c = \frac{2N_{c\bar{c}}}{N_{open}}$ is the enhancement factor. The number of J/ψ produced as a function of number of unbound charm quarks using statistical model are shown in Fig.3. The SPS data [10] are well explained using the statistical hadronization model Eq.3. By replacting $N_{c\bar{c}}$ with $(N_{c\bar{c}}(N_{c\bar{c}}+1))^{\frac{1}{2}}$ in γ_c allows the grand canonical solutions to incorporate the behaviour of canonical corrections to an impressive degree of accuracy.

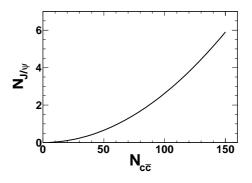


FIG. 3: $N_{c\bar{c}}$ dependence of $N_{J/\psi}$ using Statistical model.

Conclusion

We have studied the J/ψ production using both kinetic and statistical models. The number of $N_{c\bar{c}}$ at $\sqrt{s_{NN}} = 2.78$ TeV is about 80 for (0-5)% centrality, which corresponds to the number of J/ψ produced are 3 and 0.2 using kinetic model at 600 MeV with thermal and perturbative QCD p_T -distribution respectively. Using the statistical model, the number of J/ψ is 1.7.

References

- T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986).
- [2] M. C. Abreu *et al.*, [NA50 Collaboration], Phys. Lett. B **477**, 28 (2000).
- [3] M. C. Abreu *et al.*, [NA50 Collaboration], Nucl. Phys. A 698, 127 (2002).
- [4] A. Adare, *et al.*, [PHENIX Collaboration], Phys. Rev. Lett. **98**, 232301 (2007).
- [5] R. L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C 63, 054905 (2001).
- [6] R. L. Thews, M. L. Mangano, Phys. Rev. C 73, 014904 (2006).
- [7] R. L. Thews, AIP Conf. Proc. 631, 490 (2002) (hep-ph/0206179).
- [8] P. Braun-Munzinger, J. Stachel, Phys. Lett. B 490, 196 (2000).
- [9] A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 571, 36 (2003).
- [10] M. C. Abreu *et al.*, [NA50 Collaboration], Phys. Lett. B **410**, 337 (1997).

Avilable online at www.sympnp.org/proceedings