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Study of nuclear masses and their systematics is of great importance. Accurate knowl-
edge of the nuclear masses plays s decisive role in the reliable description of processes
like the astrophysical r-process. Considerable progress has already been achieved in the
accurate prediction of the masses, and it is still being pursued vigorously by a number
of groups around the globe. There are primarily two distinct approaches to calculate
nuclear masses: the microscopic nuclear models based on density functional theory, like
Skyrme Hartree Fock Bogoliubov or Relativistic Mean Field models, and the macroscopic
- microscopic (Mic - Mac) models. Here, we report the mass calculation based on the
Mic - Mac approach. According to the Mic - Mac approach, mass of a nucleus is written
as sum of Macroscopic part (liquid drop) and a microscopic part, which comprises of
shell correction and pairing energies. Here, the semi-classical Wigner - Kirkwood (WK)
~ expansion method is used to calculate shell corrections for spherical and deformed nu-
clei. The expansion is achieved upto the fourth order in ~. The pairing energies are
obtained by using the Lipkin - Nogami scheme. The macroscopic part is obtained from
a liquid drop formula, with six adjustable parameters. These parameters are adjusted to
reproduce experimental masses of 367 spherical nuclei, which yields a rms deviation of
630 keV. It is shown that the approach based on WK expansion can be reliably used for
accurate prediction of nuclear masses.

1. Introduction

With the advent of mass spectrometry, it
is now a days possible to measure masses of
short lives nuclei with great precision [1, 2].
For example, the ISOL based mass analyser
for superheavy atoms (MASHA) [3, 4] devel-
oped at JINR-Dubna is expected to measure
masses of the separated atoms in the range 112
≤ 120, the shortest measurable half life being
∼ 1 s [3]. The JYFLTRAP [5] developed at
University of Jyväskylä, enables measurement
of highly neutron deficient nuclei upto mass
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numbers ∼ 120, with high precision.

On the theoretical front as well, a number of
groups around the world are actively involved
in developing nuclear mass formulas. Pri-
marily, two distinct approaches are adopted
for this purpose, namely, the microscopic ap-
proach, based on density functional theory,
like the Skyrme Hartree - Fock - Bogoliubov
[6] or Relativistic Mean field models [7] and
the microscopic - macroscopic (Mic - Mac) ap-
proach [8–12]. These different models agree
with each other, and with the experimental
binding energies [13], however, differ widely
in the regions where, the mass measurements
are not available yet, implying that the ex-
trapolation of nuclear masses is still a chal-
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lenge. Particularly, for proper understanding
of the astrophysical r - processes, one needs to
know masses of all the nuclei, containing 30 or
so neutrons more than the heaviest measured
isotope of the same element. Thus, in such
cases, one has to rely on theoretical mass for-
mulas. Therefore, the development of depend-
able mass formulas is relevant, and important.

In the present work, we shall be discussing
the Mic - Mac approach with shell corrections
obtained by using the semi - classical Wigner
- Kirkwood expansion [16–23].

2. Formulation

The microscopic - macroscopic models are
based on the well - known Strutinsky theorem,
according to which, the nuclear binding energy
(E) can be written as sum of a smooth part
(ELDM ), and an oscillatory part (δE).

E = ELDM + δE (1)

The smooth part is adopted from the tradi-
tional liquid drop or droplet formulas. The
oscillatory part is made of pairing energy and
shell correction. The shell correction is cal-
culated by taking difference between quan-
tum mechanical energy of the system and the
corresponding averaged energy. The latter is
usually obtained within the framework of the
Strutinsky smoothing scheme [14, 15]. The
Strutinsky smoothing scheme runs into prac-
tical difficulties, particularly for finite poten-
tials, since, in this smoothing scheme, one
needs to incorporate single particle spectrum
with cut off well above (∼ 3~ω) the Fermi en-
ergy. For realistic potentials, the continuum
may begin within ~ω of Fermi energy. This
problem is tackled in practice, by discretising
the continuum by diagonalising the Hamilto-
nian in a basis of suitable dimension. The
problem becomes more serious, particularly
for neutron rich and neutron deficient nuclei,
since the Fermi level in these cases may lay
close to continuum.

The semi classical Wigner Kirkwood aver-
aging scheme [16–23], on the other hand, does
not use the single particle spectrum at all. In-
stead, the smoothing is achieved by expand-
ing the quantal partition function, in powers

of Planck’s constant, ~. In the present work,
we employ the Wigner - Kirkwood expansion,
upto the fourth order in ~, for a system of nu-
cleons at zero temperature, with deformation
parameters β2, β4 and γ. For further details,
see Ref. [12].

As stated earlier, the microscopic part of
the binding energy is made of the shell correc-
tion and the pairing energy. In the present
work, the shell corrections are obtained by
taking difference between the quantum me-
chanical energy of the system and the cor-
responding Wigner - Kirkwood energy. The
quantum mechanical energy is obtained by di-
agonalising the Hamiltonian in the harmonic
oscillator basis, with 15 shells. The poten-
tial required here, is chosen to be of Woods
- Saxon type, with parameters determined by
reproducing experimental single particle ener-
gies of some of the doubly magic nuclei [12].
The Coulomb potential is obtained by folding
the nuclear charge density with Coulomb in-
teraction. The charge density, for simplicity,
is assumed to be of Woods - Saxon form, with
the radius and diffuseness parameters taken to
be the same as that for the corresponding nu-
clear potential for protons [12]. The pairing
energy is calculated by using the well - estab-
lished Lipkin - Nogami scheme [24–26].

Here, we use a simple liquid drop model,
with six adjustable parameters. Explicitly,

ELDM = av

[

1 +
4kv

A2
Tz (Tz + 1)

]

A

+ as

[

1 +
4ks

A2
Tz (Tz + 1)

]

A2/3

+
3Z2e2

5r0A1/3
+

C4Z
2

A
, (2)

where the terms respectively represent: vol-
ume energy, surface energy, Coulomb energy
and correction to Coulomb energy due to sur-
face diffuseness of charge distribution. The co-
efficients av, as, kv, ks, r0 and C4 are free pa-
rameters; Tz is the third component of isospin,
and e is the electronic charge. The free pa-
rameters are obtained by χ2 minimisation,
with experimental binding energies taken from
Audi - Wapstra evaluation [13].
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3. Results and Discussions
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FIG. 1: The WK and Strutinsky shell corrections
for Pb isotopes.
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FIG. 2: The WK and Strutinsky shell corrections
for Gd isotopes.

First, we compare the shell corrections
obtained for chain of lead isotopes (spheri-
cal) and Gadolinium isotopes (deformed) with
those obtained from the conventional Strutin-
sky smoothing scheme (see [12] for details).

The calculated and the corresponding
Strutinsky values of shell corrections for Pb
and Gd isotopes are presented in in Figs. (1)
and (2). It is seen that the shell corrections

reach a minimum at neutron numbers 126 and
82, as expected. The WK values of shell cor-
rections are similar to those of the Strutinsky
method. At a finer level, however, they do dif-
fer from each other. The differences change as
a function of neutron excess or deficiency.

In the present study, we have considered a
set of 367 nuclei, expected to be spherical [27].
The 6 liquid drop parameters described above
are fitted to reproduce the experimental bind-
ing energies of these nuclei. The liquid drop
parameters thus obtained, are: av = −15.841
(MeV), as = 19.173 (MeV), kv = −1.951,
kS = −2.577, r0 = 1.187 (fm) and C4 = 1.247
(MeV). The rms deviation in the binding en-
ergies obtained here, turns out to be 630 keV.
The corresponding deviation in the Möller -
Nix framework is 741 keV [8, 9].

As representative cases, we next plot the
difference between the calculated and the cor-
responding experimental values of binding en-
ergies for Ca, Ti and Pb isotopes in Figs. (3)
and (4) respectively.
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FIG. 3: The difference between the calculated and
the corresponding experimental binding energies
for Ti isotopes (denoted by WK). The correspond-
ing differences for Möller - Nix mass formula (MN)
are also presented for comparison.

It is amply clear from these figures that
the present calculations agree very well with
the experimental binding energies. The differ-
ences between the calculated and the experi-
mental values vary smoothly as a function of
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FIG. 4: Same as Fig. (3), but for Pb isotopes.

mass number.
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FIG. 5: The calculated (WK) and the correspond-
ing experimental [13] single neutron separation
energies for Y isotopes.

The single and two neutron separation en-
ergies are next investigated. As representative
cases, we here present the results for chains of
Y and Tl isotopes in Figs. (5-8). It is seen
that the expected odd - even staggering in the
single neutron separation energies is well re-
produced in the present calculations, both for
Y and Tl isotopes. The two neutron separa-
tion energies, too, are well reproduced, indi-
cating that the mass formula proposed in the
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FIG. 6: The calculated (WK) and the correspond-
ing experimental [13] two neutron separation en-
ergies for Y isotopes.

202 204 206 208 210
Mass Number

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

S 1n
 (

M
eV

)

WK
Expt.

Tl - Isotopes

FIG. 7: The calculated (WK) and the correspond-
ing experimental [13] single neutron separation
energies for Tl isotopes.

present work, indeed, is reliable.

4. Summary

In the present work, the mass calculations
based on the Mic - Mac approach are reported.
The shell corrections are obtained by using the
semi - classical Wigner - Kirkwood averaging
technique. The expansion is achieved upto the
fourth order in ~, for a system of nucleons at
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FIG. 8: The calculated (WK) and the correspond-
ing experimental [13] two neutron separation en-
ergies for Tl isotopes.

zero temperature, with deformation parame-
ters β2, β4 and γ. The pairing energies, essen-
tial for reliable description of the open shell
nuclei, are obtained within the framework of
the Lipkin - Nogami scheme. The liquid drop
formula with six adjustable parameters is em-
ployed. These six parameters are obtained by
chi square fit to the experimental binding en-
ergies of the 367 spherical nuclei. It is found
that the present mass formula yields rms devi-
ation of just 630 keV, indicating its reliability.
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