Spectroscopic study of Double Beta Decay Nuclei within Deformed Hartree-Fock Model

S. K. Ghorui¹,* P. K. Raina^{1,2}, A. K. Singh¹, P. K. Rath³, and C. R. Praharaj⁴

¹Department of Physics & Meteorology,

IIT Kharagpur, Kharagpur-721302, INDIA

²Department of Physics, IIT Ropar, Rupnagar-140001, INDIA ³Department of Physics, University of Lucknow, Lucknow-226007, INDIA and

⁴Institute of Physics, Bhubaneswar-751005, INDIA

Introduction

One of the most rare processes of nature, the double beta decay has unambiguous importance in explicitly linking nuclear structure aspects with neutrino physics [1]. Nuclear double beta decay (DBD) is a second order process which involved electroweak decay of two nucleons simultaneously. The two neutrino mode of DBD which is allowed in standard model and has been detected for nearly a dozen of nuclei [2]. The correct theoretical description of these observations serves as a test of various nuclear models and also a necessary step to understand the neutrinoless mode.

We have used the above model based on deformed Hartree-Fock and angular momentum projection technique for a reliable description of the nuclear structure of nuclei participating in double beta decay processes in the mass range A = 116 to 130.

The Model

Our model consists of self-consistent deformed Hartree-Fock mean field obtained with a Surface Delta residual interaction and subsequent Angular momentum projection to obtain states with good angular momentum. More details can be found in Refs. [3].

Results and Discussion

The deformed HF orbits are calculated with a spherical core of ⁵⁶Ni, the model space spans the $1p_{3/2}$, $0f_{5/2}$, $1p_{1/2}$, $0g_{9/2}$, $0d_{5/2}$, $0g_{7/2}$, $0d_{3/2}$, $2s_{1/2}$ and $0h_{11/2}$ orbits both for protons

neutrons with single particle energies 0.0, 0.78, 1.88, 4.44, 8.88, 11.47, 10.73, 12.21 and 13.69 MeV respectively. We use a surface delta interaction (with interaction strength ~0.36 for p-p, p-n and n-n interactions) as the residual interaction among the active nucleons in these orbits.

Deformed Hartree-Fock and Angular Momentum Projection calculations are performed for some medium-heavy nuclei with mass number A = 116 to A = 130. In our model we can calculate the energy spectra and other electromagnetic moments for even-even parents and grand-daughter as well as oddodd intermediate nuclei.

FIG. 1: Energy spectra for 110 Cd. The experimental values are taken from Refs. [4]

Our self-consistent calculations reproduce the band structure quit well for the nuclei studied here. As an example, the energy spectra of ¹¹⁶Cd is shown in Figure . The compression in the ground band near $J = 8\hbar$ is occurring due to the crossing of 2-proton excitation bands across Z = 50 shell. The interplay be-

^{*}Electronic address: surja@phy.iitkgp.ernet.in

TABLE I: Comparison of calculated and experimentally observed $B(E2; 0^+ \rightarrow 2^+)$, static quadrupole moments $Q(J^{\pi})$, and magnetic dipole moments $\mu(J^{\pi})$. Here B(E2) and $Q(J^{\pi})$ are calculated for effective charge $e_p = 1.6$ and $e_n = 0.6$. The g-factors of $g_l = 1.0\mu_N$ and $g_s = 5.586 \times 0.75\mu_N$ for protons and $g_l = 0\mu_N$ and $g_s = -3.826 \times 0.75\mu_N$ for neutrons are used for the calculations. In the column 4 the values marked by * are average B(E2) values from Ref. [5]

Nucleus	as $J^{\pi} \ B(E2:0^+ \to 2^+) \ (e^2 b^{2\gamma})$		$Q(J^{\pi})$ (eb)		$\mu(J^{\pi}) \text{ (nm)}$		
		Theory	Experiment[5]	Theory	Experiment[6]	Theory	Experiment[6]
¹¹⁶ Cd	2^{+}	0.281	$0.560 \pm 0.020^{*}$	-0.396	-0.42 ± 0.04	+1.416	$+0.60\pm0.14$
			$0.501{\pm}0.047$		-0.42 ± 0.08		
			$0.608 {\pm} 0.030$		$-0.64 {\pm} 0.12$		
116 In	1^{+}			0.370	$0.11 {\pm} 0.01$	2.7645	$2.7876 {\pm} 0.0006$
116 Sn	2^{+}	0.106	$0.209{\pm}0.006^{*}$	-0.258	$-0.17 {\pm} 0.04$	0.358	-0.3 ± 0.2
			$0.183{\pm}0.037$				
			$0.165 {\pm} 0.030$				
124 Sn	2^{+}	0.125	$0.1160{\pm}0.0040^*$	-0.305	$0.0 {\pm} 0.2$	-0.246	-0.3 ± 0.2
			$0.140{\pm}0.030$				
			$0.188 {\pm} 0.013$				
^{124}Sb	3^{-}			0.725	$1.20 {\pm} 0.02$	1.624	$+1.9{\pm}0.4$
124 Te	2^{+}	0.160	$0.568{\pm}0.006^*$	-0.350	$-0.45 {\pm} 0.05$	0.649	$+0.56{\pm}0.06$
			$0.39{\pm}0.08$				$+0.66 {\pm} 0.06$
			$0.539{\pm}0.028$				$+0.62{\pm}0.08$
$^{130}{ m Te}$	2^{+}	0.229	$0.295{\pm}0.007^*$	-0.428	-0.15 ± 0.10	0.420	$+0.58{\pm}0.10$
			$0.290{\pm}0.011$				$+0.66{\pm}0.16$
			$0.260{\pm}0.050$				
^{130}I	5^{+}			1.202		3.708	$3.349 {\pm} 0.007$
$^{130}{ m Xe}$	2^{+}	0.465	$0.65{\pm}0.05^{*}$	-0.614		0.611	$+0.67{\pm}0.02$
			$0.631{\pm}0.048$				$+0.76 {\pm} 0.14$
			$0.640{\pm}0.160$				$+0.62{\pm}0.08$

tween prolate and oblate shapes are observed in our calculations for ¹³⁰Xe isotope. Our calculation for ¹³⁰Xe shows that low spin states of this isotope are of prolate shape but for the states above $J = 6\hbar$ are oblate dominance.

We have calculated the reduced transition moments, quadrupole moments and magnetic dipole moments. These values are presented in Tables I.

Conclusion

A reasonable agreement between calculated and experimentally observed quantities make us confident about the reliability of the deformed few body wave functions obtained in our microscopic self-consistent calculations. These wave functions will further be employed for nuclear transition matrix elements calculations of double beta transitions.

Acknowledgments

CRP acknowledges the support of the Department of Science and Technology, India (DST Project SR/S2/HEP-37/2008) during this work.

References

- F. Bohm and P. Vogel, Physics of Massive Neutrinos, Cambridge University Press, 2nd edition, Cambridge, (1992).
- [2] J. D. Vergados, Phys. Rep., **361**, 1 (2002).
- C.R. Praharaj, J. Physics G14 (1988)843;
 Phy. Lett. B119 17(1982), S. K. Ghorui et al., arXiv:nucl-th/1106.3152v1.
- [4] D. De Frenne, E. Jacobs, Nucl. Data Sheets 89, 481-640 (2000).
- [5] S. Raman *et al.*, At. Data Nucl. Data Tables **78**, 1 (2001).
- [6] N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).