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Introduction 
 

Heavy-ion collisions have been used to 

investigate the properties of hot and dense 

nuclear matter for the past three decades. 

Various observables like collective transverse in-

plane flow [1-3], multifragmentation and particle 
production have been proposed in this direction 

to study the properties of nuclear matter like 

nuclear equation of state and in medium nucleon-

nucleon cross-section. Out of these observables, 

collective flow has been found to be one of the 

most sensitive towards the above mentioned 

properties as well as entrance channel parameters 

like incident energies, impact parameter and 

colliding systems. Collective transverse in-plane 

flow increases with impact parameter, reaches 

maximum at semi-central collisions and then 

again starts decreasing at peripheral collisions. 
The value of impact parameter where collective 

flow vanishes (crosses zero) is called geometry 

of vanishing flow (GVF). GVF has been found 

to be sensitive to mass of the colliding systems 

and follows power law behaviour with system 

size. In [4], system size dependence of GVF has 

been found to be sensitive to in-medium 

nucleon-nucleon cross-section and is insensitive 

to equation of state and momentum-dependent 

interactions. Roe of isospin degree of freedom 

has been studied on collective flow and energy 
of vanishing flow due to the availability of RIB 

facilities. In the present paper, we studied the 

sensitivity of GVF towards isospin degree of 

freedom through the symmetry energy and 

isospin dependence of nucleon-nucleon cross-

section. We use isospin quantum molecular 

dynamics (IQMD) model [5]. 

 

The Model 

 
The IQMD model treats different charge states of 

nucleons, pions and deltas explicitly. The isospin 

degree of freedom enters into the calculations via 

symmetry potential, cross sections and Coulomb 

potential. The nucleons of target and projectile 

interact by two- and three-body Skyrme forces, 

Yukawa potential and Coulomb interactions. A 

symmetry potential between protons and 

neutrons corresponding to the Bethe-Weizsacker 

mass formula has also been included. The 

hadrons propagate using Hamilton’s equations of 
motion.  For the density dependence of nucleon 

optical potential, standard Skyrme-type 

parametrization is employed. We use soft 

equation of state along with standard isospin and 

energy-dependent nucleon-nucleon cross section. 
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Fig. 1 <px
dir> (MeV/c) as a function of reduced 

impact parameter b/bmax for different systems 

using soft equation of state (upper panel) and 
geometry of vanishing flow (GVF) as a function 

of system mass (bottom panel).  
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Fig. 2 The geometry of vanishing flow (GVF) as 

a function of system mass for zero strength of 

symmetry energy and isospin independent nn 

cross section. 

 

Results and discussion 

 
In fig. 1 (a), we display the impact 

parameter dependence of <px
dir> for 40Ca+ 40Ca 

(circles), 58Ni+ 58Ni (up triangles), 93Nb+ 93Nb 

(down triangles), 118Sn+ 118Sn (pentagons) and 
131Xe+ 131Xe (left triangles). From figure, we see 

that for all the systems <px
dir> rises as we move 

from perfectly central collisions, reaches 

maximum at semi-central collisions, then 

decreases, crosses zero and become negative at 
peripheral collisions due to the dominance of 

mean field potential and absence of nucleon-

nucleon (nn) collisions.  In fig 1 (b), we display 

the system size dependence of GVF. From 

figure, we see that GVF increases with system 

size and follows a power law behaviour with 

system size. The power law factor τ = 0.38±0.02.  

 

 

 

 

To see the role of isospin degree of 

freedom through symmetry energy and nn cross 

section, firstly, we make the strength of 

symmetry energy zero (to see the role of 

symmetry energy, open circles) and then to see 

the role of isospin dependence of nn cross-
section, we make the nn cross-section isospin 

independent (open pentagons). The results are 

displayed in fig. 2. From figure, we see that GVF 

decreases when we exclude the symmetry 

energy. This is due to the fact that symmetry 

energy being repulsive in nature enhances the 

flow. When we make its strength zero, the flow 

decreases and vanishes at smaller impact 

parameter. We also see that power law factor τ 

now becomes 0.46±0.03. When we make the 

cross-section isospin independent, GVF 

decreases throughout the mass range. The np 
cross-section is three times as that of pp or nn 

cross-section. So, the net magnitude of nn cross-

section decreases when we make the cross-

section isospin independent. So, again flow 

decreases and GVF also decreases. We also see 

that decrease in GVF is more for lighter systems 

as compared to the heavier masses due to the 

dominant role of coulomb potential than nn 

cross-section in heavier systems. Thus the power 

law factor changes drastically (almost three 

times) and becomes 1.11±0.28. Thus GVF can 
act as a better probe to study the isospin effects 

due to isospin dependence of nucleon-nucleon 

cross-section. 
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