Scaling of charged particle multiplicity distributions in relativistic nuclear collisions

N. Ahamd1,* Hushnud1, M. M. Khan2, M. D. Azmi1, A. Tufail3, M. Zafar1 and M. Irfan1

1Department of Physics, Aligarh Muslim University, Aligarh -202002, INDIA
2Department of Applied, Aligarh Muslim University, Aligarh -202002, INDIA
3Department of Applied Science Physics Section, University Polytechnic Aligarh Muslim University, Aligarh -202002, INDIA

* email: nazeer_ahmad_na@rediffmail.com

Introduction

Validity of KNO scaling in hadron-hadron and hadron-nucleus collisions has been tested by several workers1-6. Multiplicity distributions for p–emulsion interactions are found to be consistent with the KNO scaling hypothesis for pp collisions2. The applicability of the scaling law was extended to FNAL energies by earlier workers5,6. Slattery7 has shown that KNO scaling hypothesis is in fine agreement with the data for pp interactions over a wide range of incident energies. An attempt, is, therefore, made to examine the scaling hypothesis using multiplicity distributions of particles produced in 3.7A GeV/c 16O–, 4.5A GeV/c and 14.5A GeV/c 28Si–nucleus interactions. The formulation of KNO scaling function states that at a given incident energy the following relations may hold:

\[P(n_s) = \frac{1}{<n_s>} \psi(z) \quad \text{and} \quad z = \frac{n_s}{<n_s>} \quad (1) \]

where \(n_s \) is the number of secondaries produced in an interaction, \(P(n_s) \) is the probability of the relativistic charged secondaries produced in the final state of the collision and \(\psi(z) \) is an energy-independent function. Validity of KNO scaling may be tested by examining the behavior of the parameter, \(S_\psi(z) = \sum_{i=\text{min}}^{\infty} P_i \) as a function of \(z \).

For this purpose, a random sample, comprising of 290, 555 and 1100 16O–nucleus interactions at 3.7A GeV/c and 28Si–nucleus collisions at 4.5A and 14.5A GeV/c respectively are analyzed.

Results and discussions

\(\psi(z) \) for various values of \(z \) at different projectile energies are displayed in Fig.1. It may be of interest to mention that multiplicity distributions of relativistic charged particles produced in 3.7A GeV/c 16O–Em, 4.5A GeV/c and 14.5A GeV/c 28Si–Em collisions are reproducible by the KNO scaling function, \(\psi(z) \). However, departure of results obtained for the experimental data from the KNO predictions are observed in the regions of higher multiplicities. This fact is clear from Fig.1, as all the data points at lower multiplicity values almost lie on the curve (Eq. 2) and clear deviation is only seen at the tails of the multiplicity distributions, where largest statistical errors are expected.

\[\psi(z) = (Az + Bz^3) \exp(-Cz) \quad (2) \]

Available online at www.sympnp.org/proceedings
where A, B and C are constants. The values of these constants obtained for the best fits to the data are presented in Table 1.

For testing the validity of KNO scaling, the values of the parameter, $S_n(z)$ are estimated for 3.7A GeV/c 16O-Em, 4.5A and 14.5A GeV/c 28Si-Em interactions and the results are exhibited in Fig. 2. The data for the parameter $S_n(z)$ for the projectile energies considered by us are observed to overlap each other in the lower multiplicity regions. However, the deviations from the KNO predictions observed in the higher multiplicity regions hint towards occurrence of a new phenomenon contributing to high multiplicities in the collisions.

For testing the validity of KNO scaling, the values of the parameter, $S_n(z)$ are estimated for 3.7A GeV/c 16O-Em, 4.5A and 14.5A GeV/c 28Si-Em interactions and the results are exhibited in Fig. 2. The data for the parameter $S_n(z)$ for the projectile energies considered by us are observed to overlap each other in the lower multiplicity regions. However, the deviations from the KNO predictions observed in the higher multiplicity regions hint towards occurrence of a new phenomenon contributing to high multiplicities in the collisions.

![Fig. 2 Plots for variation of $S_n(z)$ with z in 3.7A GeV/c 16O-Em, 4.5A and 14.5A GeV/c 28Si-emulsion collisions.](image)

Table 1. Values of the constants A, B and C appearing in Eq. (2) obtained for the best fit to the data.

<table>
<thead>
<tr>
<th>Projectile type</th>
<th>Constants</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7A GeV 16O-Em</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.42</td>
<td>±1.42</td>
<td>10.33</td>
<td>±2.43</td>
</tr>
<tr>
<td>4.5A GeV 28Si-Em</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.29</td>
<td>±1.85</td>
<td>12.56</td>
<td>±1.93</td>
</tr>
<tr>
<td>14.5A GeV 28Si-Em</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.26</td>
<td>±1.94</td>
<td>12.81</td>
<td>±2.06</td>
</tr>
</tbody>
</table>

Conclusions

Validity of KNO scaling is tested by studying the variations of $S_n(z)$ with z for relativistic charged particles produced in 3.7A GeV/c 16O-Em, 4.5A GeV/c and 14.5A GeV/c 28Si-Em collisions. Scaling violations are minimal and further show occurrence of approximate scaling behavior.

References