
Proceedings of the DAE Symp. on Nucl. Phys. 56 (2011) 1128

Available online at www.sympnp.org/proceedings

A Fast Jet Finder Algorithm Using Graphic Processing Unit
Raman Sehgal and A. K. Mohanty

Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, INDIA
* email: sc.ramansehgal@gmail.com

Introduction
A collimated emission of hadrons usually

called Jet is the experimental counterparts of the
partons (quarks and gluons) which are not
observed separately. The CMS detector at LHC
is ideally designed to study jet tomography
which is an important probe to investigate the
hot and dense medium formed during the heavy
ion collisions. Although CMS analysis package
incorporates various techniques for jet finding,
the algorithm of successive recombination of
particles based on kt jet-clustering has been
widely used for jet reconstruction. This
algorithm is simple and infrared safe, however it
takes a large computing time of the order of N3

where N is the total multiplicity in a given event
and the computation becomes extremely difficult
or even impossible when multiplicity increases
particularly in the environment of LHC heavy
ion colliders. Recently Cacciari and Salam [1]
have proposed a fastjet algorithm which uses
geometrical approach to find the closest pair and
reduces its running time from N3 to NlogN. Here
we are trying to implement the variant of fastjet
algorithm where processing is done parallely
over multiple threads on the Graphics Processing
Unit.

Graphics Processing Unit (GPU)
GPU's are earlier designed to be dedicated

processor optimized for accelerating graphics
display. Recently the GPU's are available for
general purpose computing having support for
floating point arithmetic. Modern GPUs are
massively parallel, and fully programmable.
Using GPU, it is now possible to develop
programs based on specialized language like
CUDA or openCL which combines the
computing power of both CPU and GPU, thus
giving a large throughput. In this work, we have
tried to implement the jet finding algorithm
which can execute on GPU kernel. Although the
work is very preliminary the results as discussed
below are highly encouraging and suggest that

GPU based programming can be used for Jet
finding using multi-thread architecture which
otherwise takes huge computation time if
implemented only on a single CPU. For
demonstration purpose, we have used NVIDIA
Geforce GPU card (GT520) having 48 cores,
compute capability of 2.1, (supports floating
point), global memory of 1 gigabyte and 48
kilobytes per block of share memory.

The kt Jet Finder Algorithm

The sequential clustering algorithm for kt jet
finder can be formulated as follows:

1)For each pair of particles i, j, find out the
distance
 dij = min (k2

ti , k2
tj) R2

ij

with R 2
ij = (η i - η j)2+ (Φ i – Φ j)2

where kti , η i , Φ i are the transverse
momentum, rapidity and azimuth of particle.
Also for each particle find out the beam
distance

diB = k 2
ti

2) Find the minimum dmin of all the dij, diB. If dmin

is dij , merge particles i and j into a single
particle, summing their four-momenta. If it is
diB , then declare particle i to be a final jet
and remove it from the list.

3) Repeat from step 1 until no particles are left.
This algorithm is easy to understand and
implement but has a drawback of its high
computational complexity of O(N 3)

Implementation on GPU
In this work, we are using CUDA (Compute

Unified Device Architecture) which is an API in
C language to program the kernel of the GPU
[2]. Execution is carried out on each thread
which is the smallest computing unit. Threads
within the same block can synchronize with each
other and can share data using shared memory.
Before kernel execution begins, data is
transfered from host (CPU) memory to device

Proceedings of the DAE Symp. on Nucl. Phys. 56 (2011) 1129

Available online at www.sympnp.org/proceedings

(GPU) global memory. This is the process which
takes longer time. However, once data is
transferred, the kernel execution is extremely
fast as each thread executes in parallel. For
general-purpose computation on the GPU, an
essential requirement is that the data structure
can be arranged in arrays. The input to the k t jet
algorithm is a set of particles having four
momentum components Px, Py, Pz & E. In the
present implementation this input is casted as an
one dimensional array of 4N elements. While
implementing the sequential clustering algorithm
for jet finder, the input array is divided into n
equal parts, where n is the number of threads
that execute on a given GPU. The initialization
work is done on CPU and the computational
work is performed on GPU. This results in
considerable reduction of execution time .

Results
The algorithm when executed on a system

having dual core CPU of 2.8 GHz frequency and
1 GB RAM takes 526.56 ms. The same
algorithmic when implemented using CUDA
library to run on NVIDIA GT 520 GPU having
48 core takes considerably less time about 32.17
ms when thread number increase to 6 (see figure
1).

 Figure 2 shows input data which contains 180
particles comprising of ten jets. Figure 3 shows
the reconstructed jets which are computed using
jet finder algorithm implemented in GPU

.

Conclusion
In this paper we have presented an

implementation of jet finder algorithm using
NVIDIA GT 520 GPU card. It is observed that
GPU can speed up the jet finding algorithm
depending on how many threads are used. This
work is in progress where the algorithm will be
improved using Delaunay triangulation as was
used in the original work [1] to search the
nearest neighbours. Once this is achieved, the
algorithm will parallelize the jet finding codes
particularly for heavy ion jet reconstruction.

Reference
[1] Dispelling the N3 myth for the kt jet-finder,
 M. Cacciari and G. P. Salam, Phys. Lett. B
 641, 57, 2006.
[2] http://developer.download.nvidia.com/compu
 te/cuda/2_0/docs/NVIDIA_CUDA_Programm
 ing_Guide_2.0.pdf

Fig 1: Execution time v/s number of threads

Fig 2: Real data with 180 particles

Fig 3: 10 Detected jets

