Proceedings of the DAE Symp. on Nucl. Phys_{π} ⁵⁷ (2012) Nature of K^{π}=0² band in ¹⁶²Er

J.B. Gupta

Ramjas College⁺, University of Delhi, Delhi-7 jbgupta2011@gmail.com

The level structure in N=88-100 isotopes of ¹⁵⁶⁻¹⁶⁸Er under goes a profound change with N. The $K^{\pi} = 0_2^+$ band moves from below K=2₁ γ -band to above it at N=92 and lies highest at N=98. These isotopes have been studied intensively in regard to the collective nature of the K=0₂ band. Recently, Caprio et al. [1] studied the excited states of ¹⁶²Er populated in β -decay, in high statistics coincidences with TRIUMF ISAC facility, and resolved several doublets The absolute B(E2) strength for excitation of 0₂ state was determined precisely, as also for some other

transitions, important to determine the nature of $K=0_2$ band, were measured.

Earlier [2], we studied the γ -g transitions in the decay of ¹⁶²Er, using the algebraic Interacting Boson Model [3], which enables a phenomenological fit to level energy data and possibly, also to some E2 transition rates. The DPPQ model [4] provides a microscopic approach without the need of fitting to data. Here we present the results from our DPPQ model analysis for the γ -g, K=0₂ –g and from K,I=4,4 state and discuss the nature of K=0₂ band in ¹⁶²Er. The previous IBM-1 results are also included.

Table -1 The absolute $B(E2) (e^2b^2)$	in	¹⁶² Er and other static quantities.
--	----	--

Transition	EX	IBM QQ=22.9,	DPPQ X=68.0	DPPQ X=66.5,
		PAIR=11.7	$F_{b}=2.0$	$F_{b} = 2.0$
$0_{g} \rightarrow 2_{g}$	4.50 7	4.95	5.16	4.70
$\rightarrow 2_{\gamma}$	0.104 8	0.118	0.117	0.112
$\rightarrow 2_{\beta}$	0.042 10	0.0065	0.093	0.100
$0_2 \rightarrow 2_g$		0.0080	0.09	0.137
$\rightarrow 2_{\gamma}$		0.065	0.46	0.59
Q(2 ₁)		-2.01	-2.05	-1.95
β			0.267	0.267

In DPPQ model we predict the predominant K=0 component in g-band and $(2_3, 4_3)$ states and K=2 for 2_2 , 4_2 and 6_2 states. We also obtain predominant K=4 component in the fourth I^{π}=4⁺ state. Caprio et al. [1] obtained the B(E2, 0_g-2₃) strength of 8(2) WU (~0.042 e²b²), supporting the collective β -vibration. It is well known that IBM-1 predicts a low β -excitation strength generally, as also obtained by us here (Table-1). Using the E_{γ}, I_{γ} values from Ref. [5], we deduced the B(E2) ratios in Table 2, 3. The nndc data includes the updated NDS of (2007). However, some values of Ref. [1] are not included by the evaluator. These are marked here (Table 3) by asterisk

The B(E2, 0_g - 2_g) and B(E2, 0_g - 2_γ) are well given in IBM-1 and DPPQM (Table 1).

The excitation strength of 2_{β} exceeds the experimental value, signifying larger β -g mixing in DPPQM. The 2_2 - 4_1 E2 transition is very weak in DPPQ calculation and is very sensitive to slight parameterization. In RTR model, B(E2, 2_{γ} - 4_{g}) is zero for γ =0° and 30° and is 0.020 at 10°. There is large deviation for B(E2) ratios involving such weak transitions, from theory. To illustrate this, two sets of DPPQM value are cited here (Tables 1-3). Other γ -g B(E2) ratios are reproduced in IBM-1 and DPPQM. For E2 transitions from 2_3 = 2_{β} (Table 3) there is agreement with EX, except for 2_3 - $2_2/3$.

For the K=4, I=4 state the B(E2, 4- $3/2_2$) agrees with experiment in both models. But for $4_2/2_2$ ratio DPPQ value is larger

Transition	EX	Alaga	IBM [2]	DPPQ -1	DPPQ -2	RVM [1]
$2_2 \rightarrow 0/2$	0.42 2	0.70	0.65	0.31	0.235	
→4/2	0.12 8	0.05	0.064	0.016-E03	0.0045	
$3 \rightarrow 2/4$	0.71 9	2.50	2.03	1.46	1.32	1.01
$4_2 \rightarrow 2/4$	0.077 20	0.34	0.29	0.075	0.060	0.05
→6/4	1.29 20	0.09	0.13	0.0017	0.0022	0.055
$\rightarrow 2_2/4$	10*		11.5	7.0	6.0	
5 →4/6	0.58 6	1.75	1.26	0.85	0.75	0.47
$\rightarrow 4/4_2$	0.0014		0.044	0.055	0.066	
$6_2 \rightarrow 4/6$	0.11 2	0.27	0.216	0.028	0.21	
$\rightarrow 6/4_2$	0.036 5		0.044	0.068	0.081	
$\rightarrow 4_2/5$	0.19 5		1.7	2.30	2.28	

Table 2. B(E2) ratios for γ -g in ¹⁶²Er.

*4₂-2₂ I_{γ} is not listed in [5]. If a relative intensity of 1 is assumed, it yields the ratio=10 in agreement with theory.

Table 3. B(E2) ratios for β -g in ¹⁶²Er.

	10				
Transition	EX	[1] W.u	IBM [2]	DPPQ -1	DPPQ-2
$2_3 \rightarrow 0$	0.008	1.6 3	0.0013	0.019	0.020
$\rightarrow 2$	0.0012	2.5 5	0.0021	0.0071	0.0057
→4	0.0025	4.9	0.0047	0.082	0.090
$\rightarrow 2_2$	0.18	<37	0.0164	0.140	0.18
<i>→</i> 3	3.3*	$<\!\!660^*$	0.032	0.23	0.33
$0_2 \rightarrow 2_g/2_2$	0.007 2		0.12	0.20	0.23
$2_3 \rightarrow 0/2$	0.63 6		0.62	1.58	3.5
$\rightarrow 2_2/2_1$	< 14.3 *		7.8	4.57	31.5
→ 4/0	3.1 2		3.6	4.60	4.50
$\rightarrow 2_2/3$	0.054*		1.96	0.30	0.545
$4_4 \rightarrow 3/2_2$	1.07 11		0.610	1.04	1.21
$\rightarrow 4_2/2_2$	0.26 16		0.24	0.76	1.03

*Values from [1]. The 2_3 - 3_1 I_y assumed in [1] yields too large B(E2) due to large E_y^5 ratio.

Discussion

The level structure and B(E2) values, as well as γ -g and β -g transitions are well given in IBM-1 and DPPQM. Our study supports the K=0₂ band to be beta band and 4₄ state as predominantly K=4.

References

[1] M. A. Caprio, Phys. Rev. C66, 014307 (2002).

[2] J.B. Gupta and A.K. Kavathekar, Nucl. Phys. symp.**41B**, 76 (1998).

[3] F. Iachello and A. Arima, *The Interacting Boson Model* (Cambridge Univ. Press, 1987).
[4] K. Kumar and M. Baranger, NPA110, 529 (1968).

[5] http://<u>www.nndc.bnl.gov</u>/nsdf. +Associated