Multiparticle high-K structures in odd-A rare earth nuclei

R. Gowrishankar*, Kamalakanta Jena and P.C. Sood

Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam - 515134, A.P., INDIA * email: rgowrishankar@sssihl.edu.in

Long-lived excited states (isomers) occur in axially symmetric quadrupole deformed nuclei mainly as a consequence of conservation of $K=\sum_i \Omega_i$ (with Ω denoting a Nilsson orbital) quantum number. High K multi-quasiparticle (mqp) structures arise from coupling of angular momenta of broken pairs in even-even nuclei and valence nucleons. Long-lived K isomers result when these mpq high K structures occur at low energies competing with collective yrast states, or when their decay is K-hindered.

Jain *et al.*[1] had reported the first listing of 3qp structures in 1990 and Singh *et al.* [2] published an exhaustive compilation, as of July 2005, of 3qp band levels observed in odd-A rare earths. Numerous mpq (m=1-9) K-isomers with $t_{1/2}$ ranging from ns to years have been identified to-date in several nuclei across the periodic table [3]. Presently we focus on K-isomers with $t_{1/2} \ge \mu s$ in odd-A rare earth nuclei.

Significant advances in identification of such isomers have come about during the past decade mainly due to improved/new technologies, which include:

- (a) use of Gammasphere multidetector array in (HI,xn) reaction studies [4];
- (b) multiparticle transfer reactions [5];
- (c) deep inelastic reactions [6];
- (d) relativistic projectile fragmentation (RPF) [7,8];
- (e) RPF with a storage ring [9].

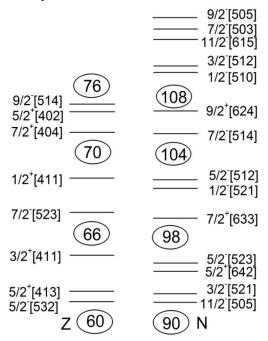
To illustrate the mqp structures observed in odd-A nuclei, we list in Table 1 K-isomers with $t_{1/2} \ge \mu s$ identified so far [3-9] in the Z=72 (Hf) and Z=73 (Ta) isotopic sequences. To unravel these structures, we first look at the available 1qp configuration space sketched in Fig. 1. Interestingly at almost halfway between Z=60 & 82 (at Z=72) and between N=82 & 126 (at N=106), we find close lying Ω =7/2 & 9/2 orbitals. This fact explains the observation [3] of low-lying (~1MeV) K^π=8 pp isomers in all eveneven Z=72 (Hf) isotopes and K^π=8 nn isomers in all N=106 isotones from Z=68 (¹⁷⁴Er) through Z=82 (¹⁸⁸Pb). The classic (first reported in 1968)

Table 1: Presently identified long-lived ($t_{1/2} \ge \mu s$) high spin (J $\ge 17/2$) multiparticle isomers in odd-A $_{72}$ Hf and $_{73}$ Ta isotopes

^A X	E _x (ke	V) t _{1/2}	K^{π}
[A]: Odd A 72Hf isotopes			
$^{175}Hf_{103}$	1433	1.1µs	19/2+
7 105	3015	1.2µs	35/2-
	4636	2.8µs	45/2+
	7455	>7ns	(57/2-)
$^{177}Hf_{105}$	1342	56µs	19/2+
	1315	1.1s	23/2+
	2740	51.4m	37/2-
$^{179}Hf_{107}$	1106	25d	25/2-
	3775	15µs	43/2+
$^{181}Hf_{109}$	1044	~100µs	17/2+
	1742	1.5ms	25/2-
$^{183}Hf_{111}$	1464	10s	27/2-
$^{187}Hf_{115}$?	0.27µs	?
[B]: Odd A ₇₃ Ta isotopes			
$^{175}Ta_{102}$	1568	2µs	21/2-
$^{177}Ta_{104}$	1355	5.3µs	21/2-
	4656	133µs	49/2-
¹⁷⁹ Ta ₁₀₆	1328	1.6µs	23/2-
	1317	9ms	25/2+
	2640	54.1ms	37/2+
$^{181}Ta_{108}$	1483	25µs	21/2-
	2228	210µs	29/2-
$^{183}Ta_{110}$	1311+	-x 0.9μs	19/2+
$^{185}Ta_{112}$	1273	11.8ms	21/2-
$^{187}Ta_{114}$	1789	22s	27/2-
	2935	>5m	41/2+
¹⁸⁹ Ta ₁₁₆	?	0.6µs	?
	?	1.6µs	?

longest-lived even-even isomer ($t_{1/2} = 31y$) observed in ¹⁷⁸Hf (2446 keV) has $K^{\pi}=16^+$ with

Available online at www.sympnp.org/proceedings


 $4qp[pp8^{\circ}\otimes nn8^{\circ}]$ structure and is seen as an yrast trap, since it occurs lower in energy than any other I=16 level. Further, a $K^{\pi}=22^{\circ}$ isomer $(t_{1/2}=43\mu s)$ in ¹⁷⁶Hf at 4864 keV is interpreted as a 6qp [4qp 16⁺ \otimes nn6⁻] structure [4].

The observed mqp structures, listed in Table 1, are interpreted as arising from the coupling of the valence nucleon with the (m-1)qp broken pair structures in the core (A-1) even-even nucleus. For instance, the 3qp isomers in 177 Hf(23/2⁺), 179 Hf(25/2⁻) and 181 Hf(17/2⁺) arise from the coupling of $2qp K^{\pi}=8(pp)$ structure with the respective valence neutron orbital (as seen in Fig.1), namely 7/2⁻(N=105), $9/2^{+}(N=107)$ and $1/2^{-}(N=109)$. The K^{π}=37/2⁻ isomer in ¹⁷⁷Hf has the $5qp[4qp16^+ \otimes n5/2^-]$ structure. The $K^{\pi}=49/2^{-1}$ isomer $(t_{1/2}=192\mu s)$ at 4656 keV in ¹⁷⁷Ta has been given the structure $7qp[6qp22^{-}\otimes p5/2^{+}]$. The 4636 keV (45/2⁺) and 7455 keV (57/2-) isomers in ¹⁷⁵Hf are interpreted [3] as 7qp and 9qp isomers respectively. Two superdeformed (SD) bands at 3726 keV (31/2⁻ to 83/2⁻) and 12688 keV (79/2⁻ up to 127/2⁻) have also been identified [10] in ¹⁷⁵Hf.

Relativistic projectile fragmentation (RPF) [7-9] and deep inelastic reactions [6] are effective processes to investigate very neutronrich nuclei. The storage ring technology [9] has a further advantage in that it can identify longerlived (>1m) isomers in these exotic species. For Hf and Ta n-rich (N≥110) nuclides, the $11/2^{+}[615]$ n-orbital also comes into play resulting in higher K-values. For instance, the 1712 keV ¹⁸³Hf isomer ($t_{1/2}$ ~10s) is assigned [9] the 3qp structure $K^{\pi}=27/2^{-1}[pp8 \otimes n11/2^{+}]$. The 2935 keV ¹⁸⁷Ta isomer is identified [9] as a 5qp structure $K^{\pi}=41/2^{+}[ppp8^{-}\otimes 5/2^{+}:nn10^{-}(9/2^{-}\otimes$ $11/2^{+}$]; a 5qp structure with such a high K occurring below 3 MeV is seen to be even longer-lived (>5m) than the ¹⁸⁷Ta ground state (2.3m). The recent RPF publication [8] leads us to an interesting observation: '56 scientists from 23 institutions of 11 nations teamed up to identify 49 isomers in 23 nuclides of 8 elements in this experiment!'

Confirmation of the suggested isomer configuration is sought from other experimental quantities e.g. decay transition rates, $(g_{K}-g_{R})$ values, reduced K-hindrance factors etc.. Critical analysis of all available isomer data is being

undertaken to deduce distinctive characteristics of this phenomenon.

Fig. 1: Schematic (not to scale) single particle level diagram for rare earth nuclei. The energy ordering of levels is only qualitative.

References

- [1] A.K. Jain, *et al.*, Rev. Mod. Phys. **62** (1990) 393.
- [2] S. Singh *et al.*, At. Data Nuc. Data Tab., **92** (2006) 1.
- [3] ENSDF, XUNDL, NWC and NUDAT, continuously updated data bases at NNDC (Brookhaven NY) June 2012 version
- [4] G. Mukherjee *et al.*, Phys. Rev. C82 (2010) 054316
- [5] T. Shizuma *et al.*, Eur. Phys. J. A39 (2009) 263
- [6] G. J. Lane *et al.*, Phys. Rev. **C80** (2009) 024321
- [7] N. Alkhomashi *et al.*, Phys. Rev. C80 (2009) 064308
- [8] S. J. Steer *et al.*, Phys. Rev. C84 (2011) 044313
- [9] M.W. Reed *et al.*, Phys. Rev. Lett. **105** (2010) 172501
- [10] D.T Scholes *et al.*, Phys. Rev. **C70** (2004) 054314.