De-excitation of hot rotating nuclei near proton dripline

J. Ray¹, U. Datta Pramanik¹,* R. K. Bhowmik^{2,3}, S. Chakraborty¹, A.

Chakraborty⁴, R. Garg⁵, S. Goyal⁵, S. Ganguly⁶, S. Kumar⁷, S. Mandal⁵, B. Mukherjee⁴, P. Mukherjee⁸, S. Muralithar², D. Negi², A. Rahaman¹, I. Ray¹, M.

Roy¹, M. Saxena⁵, K. Selvakumar⁷, P. Singh⁷, A. K. Singh⁷, and R. P. Singh² ¹Saha Institute of Nuclear Physics, Kolkata

²Inter University Accelerator centre (IUAC), New Delhi

³Guru Ghasidas University, Bilaspur

⁴Viswa Bharati University, Santiniketan

⁵University of New delhi, New Delhi

⁶Chandannagar College, Chandannagar

⁷Indian Institute of Technology, Kharagpur and

⁸St. Xavier's College, Kolkata

Relative population of various nuclei obtained from ${}^{32}S+{}^{92}Mo \longrightarrow {}^{124}Ce^*$ fusionevaporation reaction have been measured through observation of corresponding γ -rays. Comparison of experimentally obtained relative population of various isotopes with statistical model calculation (with default and changing parameter) shows that most of the evaporation channels are in agreement with the statistical code calculation PACE4 except ¹¹⁸Xe, ¹²⁰Xe, ¹²¹Cs and ¹²²Ba.

1. Introduction

The de excitation of hot compound nucleus, near β -stability line, produced in fusionevaporation reaction in general follows the standard statistical process. This type of statistical calculations have been implemented in various statistical codes like PACE, CAS-CADE, GEMINI etc depending upon some significant ingredients like particle transmission coefficients, level densities, fission barriers etc. [1], extracted from different phenomenological models. It is of special interest to check whether the standard statistical model (SSM) is applicable for the nuclei far from the stability. Here we shall report the details comparison of the experimentally obtained result for de excitation of the compound nucleus 124 Ce, produced from ${}^{32}S + {}^{92}Mo$ reaction, with the SSM calculation varying input parameters.

2. Experimental Details

Two experiments were carried out using same target- projectile combination; one with self supporting $^{92}\mathrm{Mo}$ target (thickness $7.3\mathrm{mg/cm^2}$ and 97.5% enriched) and another using thin ⁹²Mo target (thickness $\sim 200 \mu g/cm^2$ and 99% enriched) with gold backing, at IUAC, New Delhi, utilizing beam of ${}^{32}S$. The beam energy for the thick and thin target experiments were 150MeV and 140 MeV, respectively. The details of the experiments have been given in [2].

3. Data Analysis and Results

For data analysis INGASORT software has been used. Isotopes like ${}^{122-120}$ Ba, 121 La, ${}^{121-118}$ Cs, ${}^{120-117}$ Xe, 117 I, 114 Te etc. have been populated through evaporation of protons, neutrons, alpha etc from the highly excited compound nucleus ¹²⁴Ce. High spin states of exotic Cs isotopes have been populated [3]. The relative cross-section of population of various isotopes have been obtained by considering the intensity of lowest excited state transitions of those isotopes and then by normalizing them with respect to that of ¹²⁰Cs $(^{120}Cs \text{ could be populated only by evaporation})$ of 3pn from the ¹²⁴Ce). Experimentally obtained result have been compared to the statistical model calculation PACE4, for both the experiments.

^{*}Electronic address: ushasi.dattapramanik@saha. ac.in

FIG. 1: Relative population of various isotopes with varying fission barrier scaling factor; showing enhancement in population of ¹¹⁸Xe, ¹²⁰Xe, ¹²¹Cs, ¹²²Ba for the experiment with thick target.

FIG.[1] represents the observation of the experiment with thick 92 Mo target (energy 150MeV) and shows that population of most of the nuclei like 121 La, 120 Ba, 117 Xe, 117 I, 114 Te etc. closely follow the statistical model calculation. However 122 Ba, 121 Cs, 120 Xe and 118 Xe show huge deviation. Both the experimental data follow similar trend. Varying the fusion barrier scaling factor, k_f (TABLE I), the enhancement of population of these isotopes could not be reproduced. Changing level density parameter, K (TABLE II) also shows no significant change in the obtained result and could not reproduce the anomaly consistently.

4. Summary

¹²⁰Xe, ¹²¹Cs, ¹²²Ba are produced due to 4p, 3p and 2p evaporation respectively although production mechanism of ¹¹⁸Xe is yet to be investigated. Enhancement of 2p, 3p and 4p evaporation could be explained as the compound nucleus is close to the proton drip line.

Acknowledgements

The authors would like to thank the technical members of INGA set up at IUAC. One of the authors (J. Ray) acknowledges the financial support provided by the CSIR vide file number 09/489(0081)/2010-EMR-I.

TABLE I: Comparison of the calculated evaporation cross sections using different fission barrier scaling factors (k_f) with present experimental data

Populated	$k_f = 0.2$	$k_f = 0.6$	$k_f = 1.0$	Expt
isotope				
¹²¹ La	0.03	0.10	0.11	0.02
^{122}Ba	0	0.03	0.03	0.46
^{121}Ba	0.17	0.54	0.56	0.80
^{120}Ba	0.07	0.28	0.29	0.31
^{121}Cs	0.16	0.34	0.35	1.19
^{120}Cs	1	1	1	1
^{119}Cs	0.05	0.07	0.08	0.18
^{118}Cs	0.20	0.21	0.22	0.17
120 Xe	0.25	0.31	0.30	1.0
119 Xe	0.12	0.17	0.17	0.13
¹¹⁸ Xe	0.21	0.49	0.51	1.63
117 Xe	0.48	0.43	0.44	0.36
117 I	0.45	0.42	0.46	0.41
$^{114}\mathrm{Te}$	0.36	0.30	0.31	0.24

TABLE II: Calculated evaporation cross section with different level density parameters (K) and comparison with present experimental data

Populated	K = 10	K = 12	K = 13	K = 15	Expt
isotope					
121 La	0.11	0.19	0.25	0.38	0.02
122 Ba	0.03	0.06	0.10	0.17	0.46
121 Ba	0.56	0.81	0.96	1.21	0.80
120 Ba	0.29	0.35	0.37	0.45	0.31
^{121}Cs	0.35	0.42	0.46	0.52	1.19
^{120}Cs	1	1	1	1	1
^{119}Cs	0.08	0.11	0.12	0.23	0.18
^{118}Cs	0.22	0.42	0.56	0.92	0.17
120 Xe	0.30	0.24	0.23	0.20	1.0
119 Xe	0.17	0.1	0.07	0.05	0.13
$^{118}{\rm Xe}$	0.51	0.81	0.97	1.37	1.63
117 Xe	0.44	0.59	0.63	0.71	0.36
117 I	0.46	q 0.46	0.48	0.49	0.41
$^{114}\mathrm{Te}$	0.31	0.38	0.44	0.46	0.24

References

- [1] C. Wang et al Phys Rev C 014609 (2011)
- [2] http://www.sympnp.org/proceedings/55/A26.pdf
- [3] http://www.sympnp.org/proceedings/56/A21.pdf