
Proceedings of the DAE Symp. on Nucl. Phys. 57 (2012) 4

Available online at www.sympnp.org/proceedings

Random Matrix Theory in Nuclear Structure:
Past, present and Future

V.K.B. Kota
1∗

1Theoretical Physics Division, Physical Research Laboratory, Ahmedabad - 380009, INDIA

Random matrix theory (RMT) introduced by Wigner in 50’s to describe statistical
properties of slow-neutron resonances in heavy nuclei such as 232Th, was developed fur-
ther in the 60’s by Dyson, Mehta, Porter and others and in the 70’s by French, Pandey,
Bohigas and others. Going beyond this, the demonstration that level fluctuations of
quantum analogues of classically chaotic few-degrees-of-freedom systems follow random
matrix theory (integrable systems follow Poisson as shown by Berry) in 1984 by Bohigas
and others on one hand and the recognition from 1995 onwards that two-body random
matrix ensembles derived from shell model have wide ranging applications on the other,
defined new directions in RMT applications in nuclear physics. Growth points in RMT
in nuclear physics are: (i) analysis of nuclear data looking for order-chaos transitions and
symmetry (Time-reversal, Parity, Isospin) breaking; (ii) analysis of shell model driven em-
bedded (or two-body) random matrix ensembles giving statistical properties generated by
random interactions in the presence of a mean-field; (iii) statistical nuclear spectroscopy
generated by embedded ensembles for level densities, occupancies, GT strengths, transi-
tion strength sums and so on; (iv) the new paradigm of regular structures generated by
random interactions as brought out by studies using various nuclear models; (v) random
matrix theory for nuclear reactions with particular reference to open quantum systems;
(vi) RMT results from nuclear physics to atomic physics, mesoscopic physics and quan-
tum information science. Topics (i)-(vi) emphasizing recent results are discussed.

1. Introduction

Wigner in 1955 introduced random matrix
ensembles in physics in his quest to derive
information about level and strength fluctu-
ations in compound nucleus resonances. As
stated by Wigner: The assumption is that
the Hamiltonian which governs the behavior of
a complicated system is a random symmetric
matrix with no particular properties except for
its symmetric nature. Further, as French adds:
with one short step beyond this, specifically
replacing “complicated” by “non-integrable”,
this paper would have led to the foundations
of quantum chaos. Perhaps it should be so
regarded even as it stands. Dyson gave the
tripartite classification of random matrix en-
sembles giving the classical random matrix en-
sembles, the Gaussian orthogonal (GOE), uni-
tary (GUE) and sympletic (GSE) ensembles.
Porter’s book [1] gives an excellent introduc-
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tion to random matrix theory and also a col-
lection of papers published till 1965. Similarly,
Mehta’s book [2], first published in 1967 de-
scribes mathematical foundations of classical
ensembles.

Significant results of GOE (similarly for
GUE and GSE) are: (i) the nearest neigh-
bor spacing (S) distribution (NNSD) P (S) dS
(of unfolded spectra) is well represented by

the Wigner’s surmise P (S) dS ∼ S e−S2

dS
(but not by the Poisson law e−S dS) showing
level repulsion; (ii) the Dyson-Mehta ∆3 spec-
tral statistic showing spectral rigidity; (iii)
locally renormalized transition strengths (x)
obey the Porter-Thomas (P-T) law P (x) dx ∼
x−1/2 e−x dx. Random Matrix Theory (RMT)
has become a common theme in quantum
physics with the recognition, by Bohigas and
collaborators in 1984, that quantum systems
whose classical analogues are chaotic, follow
RMT. As summarized by Altshuler in the ab-
stract of the colloquium he gave in memory
of J.B. French at the university of Rochester
in 2004: ”Classical dynamical systems can



Proceedings of the DAE Symp. on Nucl. Phys. 57 (2012) 5

Available online at www.sympnp.org/proceedings

be separated into two classes - integrable and
chaotic. For quantum systems this distinc-
tion manifests itself, e.g. in spectral statistics.
Roughly speaking integrability leads to Poisson
distribution for the energies while chaos im-
plies Wigner-Dyson statistics of levels, which
are characteristic for the ensemble of random
matrices. The onset of chaotic behavior for
a rather broad class of systems can be under-
stood as a delocalization in the space of quan-
tum numbers that characterize the original in-
tegrable system. . . .”. Book by Haake [3] is a
good reference for all this. With the revival of
interest in RMT in physics from 1984, there
are now applications of RMT to many diverse
fields such as quantum information science,
Econophysics, multivariate statistics, informa-
tion theory, wireless communication, neural
networks, biological networks, number theory
and so on [4, 5].

In the middle of all these exciting develop-
ments in RMT, a new class of random ma-
trix ensembles, called embedded random ma-
trix ensembles have started receiving special
attention in quantum physics [6–8]. Isolated
finite many-particle quantum systems such as
nuclei, atoms, quantum dots, small metallic
grains, spin models for quantum computer
core, BEC etc. share one common property
- their constituents interact via interactions
of low body rank and they are mostly two-
body in nature. Besides this, the particles
move in a mean-filed giving a one-body term
in the Hamiltonian operator. However, rep-
resentation of the many-particle Hamiltonian
by classical ensembles imply many-body inter-
actions. In fact: the GOE, now almost uni-
versally regarded as a model for a correspond-
ing chaotic system is an ensemble of multi-
body, not two-body interactions. This differ-
ence shows up both in one-point (density of
states) and two-point (fluctuations, smoothed
transition strengths) functions generated by
nuclear shell model. Two-body interactions
imply that many of the many-particle Hamil-
tonian matrix elements should be zero. There-
fore it is more realistic to consider many par-
ticle Hamiltonian matrix ensembles generated
by random interactions. As here a classical en-
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FIG. 1: Schematic diagram giving the regions, in
the excitation energy vs angular momentum plane
for nuclei, where data was analyzed for evidence
for chaos and random matrices.

semble is embedded in many-particle spaces,
these are generically called embedded ensem-
bles (EE) or random interaction matrix mod-
els (RIMM). Most recent reviews on applica-
tions of RMT in nuclear physics are given in
[8–10]. Now we will give a preview.

In sections 2-7 we will briefly discuss
(i) analysis of nuclear data looking for
order-chaos transitions and symmetry (Time-
reversal, Parity, Isospin) breaking, (ii) shell
model driven embedded (or two-body) ran-
dom matrix ensembles giving statistical prop-
erties generated by random interactions in the
presence of a mean-field, (iii) statistical nu-
clear spectroscopy generated by embedded en-
sembles for level densities, occupancies, GT
strengths, strength sums and so on, (iv) the
new paradigm of regular structures generated
by random interactions as brought out by
studies using various nuclear models, (v) ran-
dom matrix theory for nuclear reactions with
particular reference to open quantum systems,
and (vi) RMT results from nuclear physics to
atomic physics, mesoscopic physics and quan-
tum information science (QIS) respectively.
Section 8 gives conclusions.
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2. Analysis of nuclear data for

order-chaos transitions and sym-

metry breaking

First evidence for the applicability of RMT
has come from neutron resonance spacings
(testing GOE) and widths (testing P-T). Best
analysis for this has been done by Bohigas,
Haq and Pandey (BHP) during 1982-85 with
1762 resonance energies corresponding to 36
sequences of 32 different heavy nuclei and 1182
widths corresponding to 21 sequences of the
same nuclei. This analysis has been used by
French et al to derive, via GOE to GUE tran-
sition curve for the number variance, a bound
on time reversal symmetry breaking part of
the nucleon-nucleon interaction. Garrett et
al (GRFJ) analyzed NNSD for high-spin lev-
els near the yrast line in rare-earth nuclei and
found, as these levels are regular, Poisson fluc-
tuations. Similarly, Enders (E) et al analyzed
NNSD for scissors mode levels in 13 nuclei
and also electric pigmy dipole resonances lo-
cated around 5-7 MeV in four N=82 isotones.
This analysis brought out the difference be-
tween the scissor mode and pigmy dipole res-
onance. Using 2 × 2 block matrix GOE with
a different variance for the off-diagonal block,
Shriner, Mitchell and Barbosa (SM-B) have
determined bounds on isospin breaking in 26Al
and 30P. Using the Rosenzweig-Porter model
of drawing levels from several GOE’s (frac-
tion of levels from each of them say f), Abul-
Magd with the Heidelberg group (AWSH) de-
termined best possible values for the chaotic-
ity parameter f for low-lying 2+ levels and
similarly Abul-Magd and Al-Sayed (AA) ap-
plied this to prolate vs oblate nuclei. Stephens
et al (SDLM) developed a novel technique
to measure the chaoticity parameter (Λ1/2)
for order-chaos transition in rotational nuclei.
With d giving the average spacing of the levels
that are mixed and v giving the r.m.s. admix-
ing matrix element, Λ1/2 = v/d. NNSD here
is given by a simple 2×2 matrix for Poisson to
GOE transition. Finally, Bohigas and Leboeuf
(BL) showed that masses of nuclei exhibit fea-
tures of chaos. Fig. 1 shows the data analysis
carried out so far in E−J plane. In addition to
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FIG. 2: Embedded random matrix ensembles
with symmetries. EGOE/EGUE correspond to
fermionic systems and BEGOE/BEGUE corre-
spond to bosonic systems. See [11] for details.

experimental data, there were several studies
using nuclear models such as shell model, IBM
and other models [8, 9]. Although the analy-
sis using data and models gave insights into
order-chaos transitions and symmetry break-
ing in nuclei, a clear understanding of (E, J)
dependence for a given nucleus for the on set
of chaos (or RMT behavior) in is not yet avail-
able.

3. Embedded random matrix en-

sembles from shell model

Calculations in late 60’s with the then new
Rochester - Oak Ridge shell mode code by
French’s group have shown that the smoothed
(with respect to energy E) level densities
(fixed-J or JT density of eigenvalues) I(E)
take Gaussian form while classical ensembles
give Semi-circle form. In the 80’s it is found
that smoothed transition strengths follow bi-
variate (in the two energies involved) Gaus-
sian form while classical ensembles give con-
stant value. Similarly, it is seen that chaos
measures such as number of principle compo-
nents (NPC) and information entropy (Sinfo)
in shell model wavefunctions have quite dif-
ferent behavior compared to GOE results. On
the other hand level and strength fluctuations,
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after unfolding individual spectra, are seen to
follow GOE. Also shell model is seen to gen-
erate separation in averages (smoothed forms)
and fluctuations and cross correlations (absent
in GOE) in spectra with different quantum
numbers. Thus both one and two-point func-
tions are different for shell model. These are
well verified extensively in both in 2s1d and
2p1f shell examples. All these difference show
that the two-body nature of nucleon-nucleon
interaction need to be taken into account in
RMT. Shell model with ensembles of random
two-body interactions is seen to produce the
forms for various quantities seen in shell model
calculations with realistic interactions. Ran-
dom matrix ensembles generated by random
interactions are called generically embedded
random matrix ensembles or simply embed-
ded ensembles (EE).

Starting with a two-body interaction, rep-
resenting the Hamiltonian matrix in two-
particle spaces by GOE and then generating
the many particle Hamiltonian for each mem-
ber of the GOE in two-particle spaces, we have
an ensemble of random matrices in many par-
ticle spaces. In this random matrix ensemble
in many-particle spaces, as a GOE is embed-
ded, this is called EGOE(2); here ’E’ stands
for embedded and ’2’ is for two-body. It is im-
portant to recognize that for EE there will be
correlations between many particle H matrix
elements and they are responsible for generat-
ing results different from GOE. The H opera-
tor can have a wide variety of symmetries such
as spin (s = 1/2), spin-isospin SU(4), parity
(π) etc for fermion systems or the fermions can
be spinless. These give EGOE(2), EGOE(2-s.
EGOE(2)-SU(4), EGOE(2)-π and so on. Sim-
ilarly, for boson systems it is possible that H
operator carry F -spin (as in proton-neutron
IBM) or spin 1 (as isospin T = 1 in IBM-
3 model) degree of freedom or the bosons
can be spinless. Then we have BEGOE(2),
BEGOE(2)-F and BEGOE(2)-S1 ensembles
(’B’ stands for boson). In addition to two-
body interactions, realistic systems also have a
mean-field one-body part in the Hamiltonian.
The one and two-body parts are denoted by
h(1) and V (2) respectively. We assume that

V (2) in particle spaces is represented by GOE
(it is also possible to consider GUE represen-
tation and then we have EGUE and similarly
EGSE) with matrix elements variance unity
(it is 2 for diagonal matrix elements). Simi-
larly, h(1) is defined by single particle (sp) en-
ergies. We assume that the sp energies have
average spacing ∆. Then the Hamiltonian is

H(1 + 2) = h(1) + λV (2) . (1)

Here λ is the strength of the interaction in
units of ∆ and we set, without loss of gen-
erality ∆ = 1. With H(1 + 2), we have
EGOE(1+2), EGOE(1+2)-s etc. and these
are one plus two-body embedded random ma-
trix ensembles. Fig. 2 shows various EE and
the quantum systems where they are applica-
ble. As seen from the figure, EE go beyond nu-
clear physics and also, they will describe com-
plete statistical behavior rather than just level
and strength fluctuations. EEs generate many
interesting properties and here below we will
discuss one aspect that is important in nuclear
structure.

Let us say that the dimension of m particle
space is d and denote the normalized eigen-
value density by ρ(E) and total density by
I(E). With 〈 〉 and 〈〈 〉〉 denoting average
and trace over a given space,

ρ(E) = 〈δ(H − E)〉 ,
I(E) = 〈〈δ(H − E)〉〉 = d ρ(E) .

(2)

Expanding eigenfunctions |E 〉 in terms of
some basis states (they form a complete set)

|k 〉, we have |E 〉 =
∑d

k=1 CE
k |k 〉. Then,

strength functions or local density of states
Fk(E), giving the spreading of the basis states
|k 〉 over the eigenstates, are defined by,

Fk(E) =
∑

E′

∣

∣

∣
CE′

k

∣
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∣

2

δ(E − E′) =
∣

∣CE
k

∣

∣

2
I(E)

(3)

where
∣

∣CE
k

∣

∣

2
denotes the average of |CE

k |2 over
the eigenstates with the same energy E. Sim-
ilarly, NPC (denoted as ξ2) - number of prin-
cipal components and Sinfo - information en-
tropy or ℓH - localization length are defined
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by,

ξ2(E) =

[

1

dρ(E)

∑
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d
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k
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δ(E − E′)

]−1

,

ℓH(E) = exp
[

(Sinfo)E

]

/(0.48d) ,

(Sinfo(E) = − 1

d ρ(E)
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δ(E − E′) .

(4)
Starting with the EGOE(1+2) Hamiltonian
defined by Eq. (1) and increasing λ value from
zero, the following are observed:

1. Eigenvalue density will be essentially of
Gaussian form for all λ values.

2. As λ increases, there is a transition from
Poisson to GOE fluctuations with the
onset of GOE fluctuations at λ = λc.

3. For λ ∼ 0 strength functions will be
delta functions and then quickly turn
into Breit-Wigner (BW) form at λ = λ0

with λ0 << λc. As λ increases beyond
λc there will be a transition from BW
form to Gaussian with the onset of this
transition at λ = λF > λc.

4. As we increase λ further, there will be
a region around λ ∼ λt > λF where
different definitions of entropy, tempera-
ture etc. will coincide defining ’thermo-
dynamic region’.

Existence of the three chaos or transition
markers λc, λF and λt has been established
numerically for both fermion and boson sys-
tems by analyzing spinless and spin EE. Same
structure is also seen in shell model calcula-
tions with random two-body interactions hav-
ing J or JT symmetry [EGOE(1+2)-J or
EGOE(1+2)-JT ] and more importantly, also
with realistic interactions in presence of a
mean-field by changing all the two-body ma-
trix elements by a factor. These results de-
fine statistical spectroscopy or spectral dis-
tribution methods for nuclei (also for atoms)
and this discussed in Section 4. In addition,
they will allow us to investigate thermalization

in isolated finite quantum systems, a topic of
great current interest in quantum physics (see
Section 7).

4. Statistical spectroscopy for nu-

clear structure

Nuclear shell model examples have shown
that realistic sp energies and effective inter-
actions that are being used are such that nu-
clear systems are in λ ∼ λt region. There-
fore, for complex nuclei smoothed level den-
sities, strength functions [as the total sum
of strength function over k will give I(E),
these or their partial sums are called partial
densities in nuclear structure applications],
transition strength densities etc. will take
Gaussian form and local fluctuations follow
GOE. Note that, given a transition operatorO
the transition strength density IO(Ei, Ef ) =

I(Ef ) |〈Ef | O | Ei〉|2 I(Ei). These Gaussian
forms (valid to a large extent even for λt >
λ > λF ) given by EGOE(1+2)s can be used
to calculate spectroscopic quantities such level
densities, orbit occupancies, strength sums
(GT, E2 and M1), strength distributions (for
example GT), beta decay and double beta de-
cay half lives and so on. As fluctuations follow
GOE, they will be small (operating over a few
mean spacings) and hence can be neglected for
most purposes. Six important aspects that
should be recognized are as follows. (i) it is
assumed that EGOE(1+2) and EGOE(1+2)-
s results extend to EGOE(1+2) with shell
model J or JT symmetries and this is well
verified by large shell model (questions remain
for high J states); (ii) parameters defining the
forms given by EGOE(1+2)s can be calculated
without H matrix construction as they are
’moments’ and moments being traces of prod-
ucts of operators, it is possible to write propa-
gation equations for them; (iii) as shell model
spaces are large and convergence to Gaussian
form is poor in the tails, it is necessary to
partition the spaces to subspaces Γ and apply
EGOE results in the subspaces. For example

the partial densities IΓ(E) = 〈〈δ(H − E)〉〉Γ
will be Gaussian as they are sum of strength
functions. In practice Γ correspond to shell
model proton-neutron configurations defined
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by distributing valence protons and neutrons
in their respective shell model orbits. Then
for example, I(E) =

∑

Γ IΓ
ED(E) where ’ED’

is Edgeworth corrected Gaussian that includes
third and fourth moment corrections; (iv) usu-
ally number of Γ’s will be large and to a good
approximation, the sums over Γ can be re-
placed by ’convolutions’; (v) it is possible to
directly calculate all the densities over fixed-
J or JT spaces and alternatively J can be
projected using energy dependent spin-cutoff
factors; (vi) ground state energy (EGS) can
be determined by using the so called Rat-
cliff prescription or the exponential conver-
gence method of Zelevinsky. There are various
ways (i)-(vi) can be applied giving statistical
spectroscopy approach or spectral distribution
method for nuclear structure. This subject
was described in detail in a recent book [12].
Tables I and II give a list of applications and
references for them.

TABLE I: Level densities with interactions

Method, Authors and References

Convolution forms, partitioning, J via spin-cutoff

D. Majumdar, Nucl. Phys. A604 (1996) 129
J.B. French, S. Rab, J.F. Smith, R.U. Haq

and V.K.B. Kota, Can. J. Phys. 84 (2006) 677

Fixed-J densities with partitioning

M. Horoi, J. Kaiser and V. Zelevinsky,
Phys. Rev. C 67 (2003) 054309

M. Horoi, M. Ghita and V. Zelevinsky,
Phys. Rev. C 69 (2004) 041307(R)

Fixed-J densities with partitioning, center of mass

correction, high-performance computing

R.A. Senkov and M. Horoi,
Phys. Rev. C 82 (2010) 024304 (2010).

R.A. Senkov, M. Horoi and V.G. Zelevinsky,
Phys. Lett. B702 (2011) 413 (2011)

5. Regular structures from ran-

dom interactions

Johnson et al discovered in 1998, using nu-
merical experiments, that the nuclear shell
model with random two-body interactions
generates, with high probability, 0+ ground
states in even-even nuclei and also generates
odd-even staggering in binding energies and
the seniority pairing gap. Similarly, Bijker
and Frank in 2000 found that the interact-
ing boson model (sdIBM) with random inter-
actions generates vibrational and rotational

TABLE II: Applications of Transition Strengths
Theory in Nuclear Structure.

No. Topic Authors and References

1 Bound on time reversal J.B. French, V.K.B. Kota,
non-invariant part of A. Pandey and S. Tomsovic

nucleon-nucleon Phys. Rev. Lett. 58 (1987) 2400
interaction Ann. Phys. (N.Y.) 181 (1988) 235

2 Parity breaking matrix S. Tomsovic, M.B. Johnson,
elements in compound A.C. Hayes and J.D. Bowman

resonance region Phys. Rev. C 62 (2003) 054607

3 Single particle transfer V. Potbhare and N. Tressler
Nucl. Phys. A530 (1991) 171

4 Beta decay half lives and K. Kar, S. Sarkar and A.Ray
rates for APJ 434 (1994) 662

presupernovae stars V.K.B. Kota and D. Majumdar
and r-process Z. Phys. A351 (1995) 377

K. Kar, S. Chakravarti
and V.R. Manfredi

Pramana-J. Phys. 67 (2006) 363

5 Giant dipole widths D. Majumdar, K. Kar
and A. Ansari

J. Phys. G23 (1997) L41;
G24 (1998) 2103

6 Double beta decay Manan Vyas and V.K.B. Kota
arXiv:1106.0395 [nucl-th] (2011)

structures with high probability. Starting
with these, there are now many studies on
regular structures in many-body systems gen-
erated by random interactions. For example
some of the questions addressed are: (i) why
ground states of all even-even nuclei have pos-
itive parity; (ii) why there is preponderance
of prolate shape compared to oblate shape;
(iii) why there is natural isospin ordering -
denoting the lowest eigenvalue state (les) for
a given many nucleon isospin T by Eles(T ),
the natural isospin ordering corresponds to
Eles(Tmin) ≤ Eles(Tmin + 1) ≤ . . . (for even-
even N=Z nuclei, Tmin = 0); (iv) for proton-
neutron boson systems with F -spin, why there
is predominance of maximum F = Fmax (i.e.
IBM-1) ground states; (v) why quadrupole
collectivity dominates. Shell model and IBM
with random interactions are found to gener-
ate all these regular structure. This is a new
paradigm and early reviews are in [13, 14].
Some of these numerical results are under-
stood using four different approaches.

Zhao et al proposed an empirical approach
to predict P (J) the probability to have ground
spin J with random two-body interactions.
Energies of J states [say there are β num-
ber of eigenvalues with same J and denote the
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two-body matrix elements by G(J2, α) where
J2 is two particle J and α is number of two
particle states with same J2] are given by
E(J, β) =

∑

J2,α C(J, β : J2, α)V (J2, α). In
some simple situations it is possible to exam-
ine the geometric factors C’s and from them
infer P (J). For single j shell for fermions,
single ℓ shell for bosons, and also in some sit-
uations for multi shell examples the empirical
approach is shown to apply [14].

Second approach, first used by Bijker and
Frank and later generalized by Kota [15] for
boson systems is to employ mean-field ap-
proach. Given N bosons in n single parti-
cle states, the SGA for a IBM is U(n) and
all states belong to the symmetric irrep {N}
of U(n). Considering random Hamiltonians
(maximum two-body) that are SO(n1) and
SO(n2) scalars in U(n) ⊃ G ⊃ SO(n1) ⊕
SO(n2) ⊃ K with n1 + n2 = n, which ap-
pears in many extensions of IBM-1, and us-
ing the mean-field approach addressed is the
question of with what probability a given
(ω1ω2) irreducible representation (irrep) will
be the ground state in even-even nuclei; [ω1]
and [ω2] are the symmetric irreps of SO(n1)
and SO(n2) respectively. We will restrict to
n1 ≥ 3 and n2 ≥ 3. For this system there are
two G ’s possible: (i) U (n1)⊕U (n2) and (ii)
SO(n). In terms of the liner and quadratic
Casimir invariants, general H for this system
will have 8 parameters,. Generating random
H ’s by choosing these parameters to be zero
centered independent Gaussian random vari-
ables with unit variance, for a 500 member
ensemble, calculations have been carried out
by constructing and diagonalizing the H ma-
trix for boson numbers N = 10 − 25. Re-
sults are shown in Table III. To explain these
results, considered is the energy functional
E(α), for a simple H interpolating the two
group chains, evaluated over a N boson co-
herent state (CS). The CS is defined in terms

of the intrinsic bosons y†
0 = 1√

p

∑p
i=1 b†ℓi,0

,
∑p

i=1(2ℓi + 1) = n1 and z†0 = 1√
q

∑q
j=1 b†ℓ′

j
,0,

∑q
j=1(2ℓ′j + 1) = n2. Then,

H =
1

N
cosχ n̂2 +

1

N(N − 1)
sinχ S+S−

S+ =

p
∑

i=1

b†ℓi
· b†ℓi

−
q

∑

j=1

b†ℓ′j
· b†ℓ′j ; S− = (S+)†

|N α〉 = 1√
N !

(

cosα y†
0 + sinα z†0

)N

|0〉
E(α) = 〈H〉N,α =
cosχ sin2 α + 1

4 sin χ cos2 2α .
(5)

Minimizing E(α) gives three solutions: α = 0,
α = π/2 and cos 2α = cotχ. For α = 0 we
have y-boson condensate with energy E(α =
0) ∝ − sin χ ω1(ω1 +n1−2). Then the ground
state irreps are (ω1ω2) = (00) with 25% and
(ω1ω2) = (N0) with 12.5% probability. Simi-
larly, α = π/2 gives z-boson condensate with
energy E(α = π/2) ∝ − sinχ ω2(ω2 + n2 − 2)
and then the ground state irreps are (ω1ω2) =
(00) with 25% and (ω1ω2) = (0N) with 12.5%
probability. In the situation cos 2α = cotχ,
cranking has to be done with respect to both
SO(n1) and SO(n2). Evaluating moment of
inertia, by an extension of the ordinary SO(3)
cranking, gives (N0) and (0N) irreps will be
ground states each with 12.5% probability.
Combining all the results give, (ω1ω2) = (00),
(N0) and (0N) irreps to be ground states with
50%, 25% and 25% probability in complete
agreement with numerical findings in Table
III.

TABLE III: Probabilities (in percentage) for
(ω1ω2) to be ground state irrep

Model n1 n2 N (ω1ω2) (ω1ω2) (ω1ω2)
= (00) = (N0) = (0N)

U(7) 4 3 10 55.4 21.4 20.5
20 54 21.2 20.6

spdIBM 6 3 10 55 22.4 19.8
20 53.5 21.9 20.3

sdgIBM 10 5 10 55.3 22.9 19.2
20 53.6 22.8 20.4

spdfIBM 10 6 10 49.3 24.6 21.9
20 49.3 23.8 22

sdgpfIBM 15 10 10 53.8 22.9 20.3
20 54.4 22.4 20.5

IBM-3 15 3 10 49 27.1 19.8
20 49 25.6 20.7

IBM-4 3 3 10 49.2 22.8 22.8
20 48.8 23.2 23.2

30 6 10 50.1 28.6 18.6
18 18 10 50 23.5 23.5
15 15 10 49.6 23.6 23.6

In a third approach energy centroids and
spectral variances over various spaces for
fermion and boson systems are analyzed us-
ing random interactions. This is feasible as
propagation equations (exact or approximate)
can be written for these and therefore they can
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be calculated without H matrix construction.
For example for m fermions in a single j shell
with three body interactions, the energy cen-
troids for angular momentum I states are of
the form E(m,I) ≃ E0 + m f(j, Gα,J ) I(I +1);
G are TBME. Distribution of energy centroids
and spectral variances give information about
regular structures [7, 9, 13, 14] and Zelevinsky
calls this ’geometric chaos’.

In the fourth approach EGOE(1+2)-s
and BEGOE(1+2)-F [also EGUE(2)-SU(4),
BEGUE(2)-SU(3)] are used by adding ex-
change and pairing terms to the Hamiltonian.
In the strong coupling region, ensemble av-
eraged spectral variances show that ground
states will have spin S = 0 for fermions (F =
Fmax for bosons) and similarly there will be
odd-even staggering in ground state energies.
See [8, 11] for details.

6. Random matrix theory for

open quantum systems: basic re-

sults

RMT is usually applied to isolated (closed)
finite quantum systems where the coupling to
the environment can be neglected. However,
compound nuclear resonances and also many
systems of current interest such as quantum
dots, micro lasers cavities, microwave billiards
etc., coupling of the quantum system to the
environment must be explicitly taken into ac-
count. Properties of the open and marginally
stable quantum many-body systems can be
studied in a general fashion using the effective
Hamiltonian with a complex part of the type
[16], Heff = H0− i

2V V †; H0 gives the discrete

spectrum and V V † represents the coupling to
the continuum. With N discrete states cou-
pled to M open channels (N >> M), H0 is
a N × N matrix and V is a N × M matrix.
We will restrict the discussion to time-reversal
and rotationally invariant systems. Therefore,
H0 is real symmetric matrix and similarly, the
matrix elements of V are real. Thus, in the
random matrix approach, Heff will be a ran-
dom matrix ensemble with H0 represented by
a GOE and V matrix elements are chosen to
be independent Gaussian variables with zero

center and variance say 1/η,

{Heff} = {H0} −
i

2
{V V †} (6)

where {−−} represents ensemble. Due to the
V part, the eigenvalues of Heff will be com-
plex and we can write them as E − i

2Γ. For
example for resonance states, E represents the
resonance positions and Γ their width. Us-
ing the ensemble defined by Eq. (6) one can
study for example the statistics of neutron res-
onance spacings in the region where the reso-
nance widths are not very small compared to
the average resonance spacing and similarly
the modifications to the resonance width dis-
tribution (i.e. modification to P-T law).

Let us consider the simplest situation of
N = 2 and M = 1, i.e. two bound states
coupled to a single open channel. Then, Heff

(hereafter we call it H) matrix structure is,

H =

(

a b
b c

)

− i

(

x2
1 x1x2

x1x2 x2
2

)

(7)

where a, b, c, x1 and x2 are independent
G(0, 2v2), G(0, v2), G(0, 2v2), G(0, σ2) and
G(0, σ2) variables. In the H0 diagonal ba-
sis, with E0

1 and E0
2 being its eigenvalues,

the structure of V will remain unaltered, i.e.
(x1, x2) → (X1, X2) with X1 and X2 being
independent G(0, σ2) variables. Then,

H =

(

E0
1 0

0 E0
2

)

− i

(

X2
1 X1X2

X1X2 X2
2

)

(8)

Let us define c1 = X2
1 and c2 = X2

2 . Then it
is easy to see that the joint probability distri-
bution P (E0

1 , E0
2 , c1, c2) is,

P (E0
1 , E0

2 , c1, c2) ∝
∣

∣E0
1 − E0

2

∣

∣

√
c1c2

exp−
{

(

E0
1

)2
+

(

E0
2

)2

4v2
+

c1 + c2

2σ2

}

.

(9)
Denoting the two eigenvalues of H as E1 =
ER

1 + iEI
1 and E2 = ER

2 + iEI
2 , to derive the

joint distribution P (ER
1 , ER

2 , EI
1 , EI

2 ) we need
the Jacobi determinant

∣

∣

∣

∣

∣

∂
(

E0
1 , E0

2 , c1, c2

)

∂
(

ER
1 , ER

2 , EI
1 , EI

2

)

∣

∣

∣

∣

∣

.
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Diagonalizing the matrix given by Eq.
(8), formulas for E1 and E2 in terms of
(E0

1 , E0
2 , c1, c2) are easily obtained. Now

equating the real and imaginary parts of the
sum of the eigenvalues and similarly the sum
of the squares of the eigenvalues will give,

X = E0
1 + E0

2 = ER
1 + ER

2 ,

Y 2 =
(

E0
1 − E0

2

)2
=

(

ER
1 − ER

2

)2
+ 4EI

1EI
2 ,

ci = −EI
1 + EI

2

2
+ (−1)i (E

R
1 − ER

2 )(EI
1 − EI

2 )

2Y
.

In the variables (X, Y, c1, c2), the Jacobi de-
terminant is −(2/Y 2)[(ER

1 − ER
2 )2 + (EI

1 −
EI

2 )2]. Combing this with Eqs. (9) will give
P (E1, E2, Γ1, Γ2); defining the eigenvalues of
H to be Ei = Ei − i

2Γi, i = 1, 2 we have ER
i =

Ei and EI
i = −Γi/2. Putting A = 1/4v2 and

σ2 = 1/2η, we have,

P (E1, E2, Γ1, Γ2) ∝
[

(E1 − E2)
2 + 1

4 (Γ1 − Γ2)
2
]

[

(E1 − E2)2 + 1
4 (Γ1 + Γ2)2

]1/2

1

(Γ1Γ2)1/2

× exp
[

−A
(

E2
1 + E2

2 + Γ1Γ2

2

)

− η
2 (Γ1 + Γ2)

]

.
(10)

Now, changing the variables E1 and E2 to Z =
E1 + E2 and s = E1 − E2 and integrating
over Z gives P (s, Γ1, Γ2). Further integration
over Γ1 and Γ2 will give the distribution of
the spacings (s) between the real parts of the
eigenvalues,

P (Ŝ : Λ) dŜ = NdŜ exp− Ŝ2

2

×
∫ ∞

0







dx
√

Ŝ2 + x2/4

[

exp

(

−x2

32
− Λ

2
x

)]

×
[

(8Ŝ2 + x2) I0

(

x2

32

)

+ x2 I1

(

x2

32

)]}

.

(11)

In Eq. (11), Ŝ =
√

As, Λ = η/
√

A and
In are modified Bessel functions of first kind.
The constant N follows from the normaliza-
tion condition

∫ ∞
0

P (Ŝ : Λ) dŜ = 1. Note that√
A ∝ 1/∆ where ∆ is the man level spacing of

the closed system (defined by H0). Similarly
the transition parameter 1/Λ ∝ Γ/∆ where
Γ is the average width. In [17] it was shown
that Eq. (11) applies to the general situation

with any N and M by treating Λ as a effec-
tive parameter. Further, Eq. (11) shows that
level repulsion is suppressed for open systems
as there is finite probability for zero spacings.
Thus the real parts of the eigenvalues will be
attracted due to the coupling to the environ-
ment. The non zero probability for s ∼ 0 is
clearly seen in open chaotic 2D microwave cav-
ity experiments [17].

Turning to P-T, let us consider the situ-
ation with any N and M = 1 and denote
the real part of the N eigenvalues E − i

2Γ

by ~E = (E1, E2, . . . , EN ) and the imaginary

parts by ~Γ = (Γ1, Γ2, . . . , ΓN). The joint dis-

tributions P ( ~E, ~Γ) in the real and imaginary
parts of the eigenvalues for any N and M = 1
can be written by inspection using the 2 × 2
matrix result given by Eq. (10). Using this
along with a mean-field approximation, the
modified P-T law for the width distribution
P (Γ) dΓ is [18],

P (Γ) dΓ ∝ 1
√

(Nγ − Γ)(Γ)

(

sinhκ

κ

)1/2

× exp
[

−(N/2q2)(Nγ − Γ)Γ
]

dΓ .
(12)

Here κ = πΓ/2D and q/N determines the
mean decay amplitude. Also, D is average
spacing between the real parts of the eigen-
values and γ = Γ is the average width. The
first factor in Eq. (12) is essentially P-T and
the second factor determines the deviations.
Recently, new questions on the applicability
of P-T law for slow neutron resonance widths
have been raised [19] and the approach dis-
cussed here, taking into account the coupling
to the continuum explains the source of the
deviation from P-T [18].

7. EE from nuclei to other quan-

tum systems

Only in the last ten years it is recognized
that EE, born in nuclear physics, apply to
atomic spectroscopy [20] and this is based
on the recognition that the statistical prop-
erties seen in large atomic shell model results
for complex lanthanide atom Ce I by Flam-
baum [21] indeed imply operation of statisti-
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cal spectroscopy derived from EE. More sig-
nificantly, EE are found to be useful in the
study of certain properties of mesoscopic sys-
tems such as quantum dots and small metal-
lic grains [11, 22], for example conductance
fluctuations in Coulomb blockade regime in
quantum dots, odd-even staggering in bind-
ing energies of small metallic grains and delay
in Stoner instability in itinerant systems. Fi-
nally, very recently it is argued that EE will be
useful in quantum information science in gen-
eral and in understanding thermalization in
isolated finite quantum systems in particular
[23] with tests using experiments with ultra-
cold gases trapped in optical lattices.

8. Conclusions

A brief overview of the progress in RMT in
nuclear physics, with focus on EE and new re-
sults is given. New nuclear experiments aim-
ing at tests of various predictions and conse-
quences of EE in particular and RMT in gen-
eral are clearly called for. They will enrich the
subject in future.
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Stöckmann, Phys. Rev. Lett. 108, 174101
(2012).

[18]G. Shchedrin and V. Zelevinsky,
arXiv:1112.4919v2 [nucl-th] (2012).

[19]P.E. Koehler et al, Phys. Rev. Lett. 105,
075502 (2010).

[20]D. Angom and V.K.B. Kota, Phys. Rev.
A 71, 042504 (2005).

[21]V.V. Flambaum et al, Physica D 131, 205
(1999).

[22]Y. Alhassid, Rev. Mod. Phys. 72, 895
(2000); Ph. Jacquod and A.D. Stone,
Phys. Rev. B 64, 214416 (2001); T. Pa-
penbrock, L. Kaplan and G.F. Bertsch,
Phys. Rev. B 65, 235120 (2002); M. Vyas,
V.K.B. Kota and N.D. Chavda, Phys.
Lett. A373, 1434 (2009).

[23]W.G. Brown, L.F. Santos, D.J. Starling
and L. Viola, Phys. Rev. E 77, 021106
(2008); L.F. Santos, F. Borgonovi and
Izrailev, Phys. Rev. E 85, 036209 (2012).


