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Introduction

The Geiger-Nuttall (GN) law is a famous
age old formula which explain the measured
values of half-life of α-decay with a mathemat-
ical characteristic of linear variation of log-
arithmic half-life with inverse square root of
Q-value in l = 0 state of transition or decay.
Geiger-Nuttall plots for α-decay are expressed
as logT1/2=aQ−1/2+b, since different expres-
sion have been proposed [5, 7] to calculate
logT1/2 from A, Z and the Q-value. The ad-
justment of the formula coefficients a and b is
realized on the total experimental results of α-
decay half-lives.To explain half-life of emitted
particle carrying some angular momenta,we
derive an analytical expression for the decay
half-life akin to GN law by considering the
unstable parent nucleus as a quantum two-
body system of the ejected α- particle and the
daughter nucleus exhibiting resonance scatter-
ing phenomena under the combined effect of
nuclear, Coulomb and centrifugal forces. The
formula coefficients in our expression for the
half-life are derived naturally and the angular
momentum dependence is found inbuilt in the
formulation.

An approach have been proposed recently
[1–4] for calculation of Q-value energy and de-
cay half-life T1/2 on the α decay of radioac-
tive heavy ions, the α+nucleus system is con-
sidered as a Coulomb-nuclear potential scat-
tering problem and the accurately determined
resonance energy (E) of the quasibound state
is taken as the Q-value of the decaying sys-
tem. The width or life time of the resonance
state accounts for the decay half-life. The
normalized regular solution u(r) of the modi-
fied Schrödinger equation is matched at radius
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r=R to the outside Coulomb Hankel outgoing
spherical wave fC(kr) = Gl(η, kr)+ iFl(η, kr)
such that

u(r) = N0[Gl(η, kR) + iFl(η, kR)], (1)

where R is the radial position outside the
range of the nuclear field.

For a typical α-nucleus system with α par-
ticle as the projectile and the daughter nu-
cleus as the target, let µ represent the re-
duced mass of the system and the wave num-

ber k =
√

2µ
~2 E and η stands for the Coulomb

parameter

η = µZeZde2

~2k . With this the mean life T (or
width Γ) of the decay is expressed in terms of
amplitude N0 as

T =
~

Γ
=

µ

~k

1

| N0 |2 . (2)

Since the wave function u(r) decreases rapidly
with radius outside the daughter nucleus,
it can be normalized by requiring that
∫ R

0

∣

∣u(r)
∣

∣

2
dr = 1. Further, using the fact that

for a value of radial distance sufficiently large,
the value of Gl(η, kR) is very large as com-
pared to Fl(η, kR) by several order of magni-
tude, the T of Eq. (2) is expressed as

T =
µ

~k

| Gl(η, kR) |2
P

, (3)

where

P =
|u(r)|2

∫ R

0

∣

∣u(r)
∣

∣

2
dr

. (4)

Result of the above expression gives values of
mean life T or half-life T1/2=0.693 T of the
decay of the charged particle carrying angular
momentum l with Q-value equal to the reso-
nance energy E. In this article, we simplify the
formula (3) and put it in the well known linear
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form of GN law for the variation of logT1/2 as
a function of Q-value of the particle emitted
with some amount of angular momentum l.

In the special case of Coulomb-nuclear prob-
lem, there are specific values of η and ρ = kR
for which the Coulomb Hankel function Gl

can be expressed in some simple mathemat-
ical form giving quite accurate result. Using
2η > ρ with l ≥ 0 [8], and after simplification
we get the final formula for log10T1/2 is given
by

log10T1/2 = a′χ′ + b′ρ′ + c + d, (5)

χ′ = ZeZd

√

A
Q , ρ′ =

√

AZeZd(A
1/3
e + A

1/3
d ),

where A= AeAd

Ae+Ad
.The constants a′, b′, c, and

d are expressed as
a′ = 2a0e

2
√

2m/~ Ln10,
b′ = −bf

√
2me2r0/~ Ln10,

c = Ln cf/Ln10,

d = −[ 2
2η2+1 + 8

2η2+4 + ...+ 2 l2

2η2+l2 ]/Ln10

+Ln Ml/Ln10,
bf = 2 + a0 − 2a1 + (a0

4 + a1 − 2a2)t
1/2

+(a0

8 + a1

4 + a2 − 2a3 − 1)t
+( 5

64a0 + a1

8 + a2

4 + a3)t
3/2

+( 5
64a1 + a2

8 + a3

4 − 1
4 )t2

+( 5
64a2 + a3

8 )t5/2

+( 5
64a3 − 1

8 )t3

cf = [0.693
3P

√

m
2e2 A(A

1/3
e + A

1/3
d )r0/ZcZd 10−23]

t = ρ/2η < 1
a0 = 1.5707288, a1 = −0.2121144,
a2 = 0.074240, a3 = −0.018729 [8],√

M l = 1 + 4(2l+1)2−1
16(2ηρ)1/2

+ [4(2l+1)2−1](4(2l+1)2−9]
2[16(2ηρ)]2

+ [4(2l+1)2−1][4(2l+1)2−9][4(2l+1)2−25]
6[16(2ηρ)]3 .

nucleon mass m= 931.5 MeV, square of elec-
tronic charge e2=1.4398 MeV fm, ~= 197.329
Mev fm, and radial distance parameter
r0 = R

A
1/3

e +A
1/3

d

expressed in fm unit. The

constant ’d’ is l-dependent and it helps esti-
mate the value of decay life-time of particles
pushed out with angular momentum l > 0.

We use R = 9.5 fm and P = 10−3 for all
types of α-daughter nuclei. The radial dis-
tance R=9.5 fm is a distance over which the
value of amplitude of the resonant wave func-
tion reduces to a small value of 1

e .
We apply the formulation to several cases of

α-daughter nuclei. The experimental data are
explained quite well by our calculated results
in the situations of l=0,1, 2, 3, 5, shown in
Table 1.

TABLE I: Comparison of experimental values [6]
of α-decay half-lives and results of present calcu-
lation obtained by using formula (5)

.
A
Z Q(MeV) l logT

expt
1/2

(s) logT
form
1/2

(s)
113

54 3.090 0 3.89 3.166
151

64 2.652 0 15.03 14.80
171

76 5.371 2 2.690 2.489
175

80 7.060 2 -1.960 -2.347
211

84 7.595 5 -0.280 -1.539
237

94 5.748 1 12.120 9.337
241

96 6.185 3 11.280 8.421
255

102 8.442 5 4.200 2.574
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