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The multifractal detreneded fluctuation
analysis (MF-DFA) introduced in [1] is found
to be a highly successful method in analyz-
ing nonstationary stochastic processes. So far
the method has been applied to different areas
of statistical analysis, for instance see [2] and
the references therein. In this paper we apply
the technique to the pseudorapidity (η) dis-
tribution of shower tracks coming out of 28Si-
Ag(Br) events at an incident energy of 14.5A
GeV. Each event has a shower track multiplic-
ity n > 50. We compare the experiment with
the prediction of the Ultra-relativistic Quan-
tum Molecular Dynamics (UrQMD) [3].

In the MF-DFA formalism first a “profile”
function Y is to be determined out of the data
points xk as:

Y (i) =

i
∑

k=1

[xk − 〈x〉], i = 1, . . . , N. (1)

Then the profile Y (i) is divided into Ns ≡
int(N/s) segments of equal length s. Then
the variance of each segment p with respect to
the local trend:

F 2(p, s) =
1

s

s
∑

i=1

{Y [(p−1)s+i]−yp(i)}
2, (2)

is obtained. Here yp(i) represents the local
trend for the segment p. We consider a linear
trend of the event-wise local particle density
i.e., xk = dn/dη. The density distribution plot
(dn/dη against η) for a typical high multiplic-
ity event is shown in Fig. 1. Finally, the qth
order MF-DFA function is defined as:

Fq(s) =

{

1

Ns

Ns
∑

p=1

[F 2(p, s)]q/2

}1/q

(3)
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FIG. 1: A plot of particle density against η in a
typical high multiplicity 28Si-Ag(Br) event.

for any q 6= 0. For q = 0 the definition is
modified as:

F0(s) = exp

{

1

2Ns

Ns
∑

p=1

ln[F 2(p, s)]

}

. (4)

If the series xk is a fractal one then Fq(s) for
large s and for all q would exhibit a power-
law scaling behaviour like: Fq(s) ∼ sh(q). In
general, for a multifractal series the exponent
h(q) depends on q while for a monofractal se-
ries it is expected to be independent of q, i.e.,
h(q) = H, the Hurst exponent [4]. More-
over, for stationary series h(2) = H [4]. Thus,
one can distinguish the function h(q) as the
generalized Hurst exponent, which is related
to the multifractal scaling exponent τ(q) as
τ(q) = q h(q) − 1. The multifractal singular-
ity spectrum f(α) is determined via a Legen-
dre transformation: f(α) = qα − τ(q), where
α = τ ′(q).

Since the method, originally developed for a
nonstationary time series of effectively infinite
length, is applied to a series of finite length
(n ≥ 50), we average the MF-DFA fluctuation
function Fq(s) over the total number of events
(Nev = 158) in our sample. Fig. 2 shows the
event averaged MF-DFA fluctuation functions
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FIG. 2: Log-log plots of the event averaged MF-
FDA fluctuation functions Fq(s) with scale s
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FIG. 3: (a) The generalized Hurst exponent h(q),
(b) the corresponding τ(q) exponents and (c) the
multifractal singularity spectra.

Fq(s) plotted against the scale s for several
values of q. As expected both the experiment
and the UrQMD generated plots follow the
power-law type of scaling. The exponent h(q)
are calculated from the linear fits to the data
points for q = −5 to + 5. The order depen-

dence of the generalized Hurst exponents is
shown in Fig. 3(a) and the corresponding τ(q)
exponent spectra and the multifractal spectra
are shown, respectively, in Fig. 3(b) and 3(c).
However, the complete f(α) spectrum could
not be obtained, because of its unusual be-
haviour in the q < 0 region, as is also seen in
a similar analysis [5]. The observed nonlinear-
ity in the h(q) and τ(q) spectra and the con-
cave nature of the f(α)-spectra are clear signa-
tures of multifractality in the η-distribution of
the event samples analyzed. The experiment
and the UrQMD exhibit more or less similar
trends but the degree of multifractality is a
little weaker in the simulation. The results of
this analysis are almost consistent with those
of our previous multifractal analysis using a
different technique [6].

In summary, we have applied the mul-
tifractal detreneded fluctuation analysis in
order to characterize the η-distribution of
charged particles emitted from 28Si-Ag(Br)
collisions at an incident energy of 14.5A GeV.
The results of our analysis show multifractal
nature in the η-distribution for both the ex-
periment and the UrQMD simulation. From
our preliminary results it is expected that the
MF-DFA method will reliably characterize
the multifractal pattern of the phase-space
distribution in high-energy heavy-ion colli-
sions.
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