
Magnetic interaction and thermal conductivity in
degenerate QED plasma

S. Sarkar1∗ and A. K. Dutt-Mazumder2

1 2 High Energy Nuclear and Particle Physics Division,
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, INDIA

Introduction

Study of different transport and relaxation
properties of QCD plasmas are of interest
in different contexts specially in astrophysical
situations such as neutron stars, white dwarfs
etc.. Determination of thermal conductivity
of degenerate electron matter has been a sub-
ject of serious investigation for the last sev-
eral decades. Cooling mechanism of a new
born star is governed mainly by two mech-
anisms. After neutrino emission core of the
star cools quickly, but the crust remains hot.
Hence, a temperature gradient is set up be-
tween the crust and the core. Thermal en-
ergy flows from the crust to the core resulting
to thermalization. In the present work we in-
tend to calculate the thermalization time scale
which intimately related to the thermal con-
ductivity coefficient. We also reveal the role of
magnetic interaction in thermal conductivity.

Formalism

Present formalism is relevant in the context
of neutron star crust which mainly contains
degenerate electrons (e) and ions (i). Degen-
erate electrons constitute an ideal Fermi gas.
Electron thermal conductivity (κe) is related
to κee and κei via the following expression,

1

κe
=

1

κei
+

1

κee
, (1)

where κei,ee ∝ 1

Tνei,ee
. νei,ee are the e-e and

e-i collision frequencies. To calculate κe of the
ideal Fermi gas we appeal to the Boltzmann
equation. In absence of external force and
presence of weak temperature gradient the
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equation takes the following form vp.∇rfp =
−C[fp]. C[fp] describes the collision integral.
Due to the presence of weak temperature gra-
dient Fermi-Dirac distribution functions devi-
ate from equilibrium distribution functions fi
which can be written as f̃i = fi +

∂fi
∂ǫi

Φi
∇T
T .

The second term with Φ measures the devia-
tion from equilibrium. According to the vari-
ational principle the thermal conductivity is
given by the maximum of the following equa-
tion

1

κee
≥

(
ν

∫

p

(ǫp − µ)

T
vzfp(1− fp)Ψp

)−2

× νν
′

∫

p,p′ ,k,k′

fpfk(1 − f
′

p)(1− f
′

k)

× (2π)4δ4(p+ k − p
′ − k

′

)|M |2

×
(Ψp +Ψk −Ψp′ −Ψk′ )2

4
, (2)

Φ is given by the minimum of the above equa-
tion and the minimal value is Ψ. For the
present purpose here we consider the simplest
trial function Ψp ∝ (ǫp − µ)vz [1].
To proceed further one needs to know

the interaction. Here, we consider only the
electron-electron scattering,

|M |2 = 32e4
[

1

(q2 +ΠL)
+

(1− x2)cosφ

(q2 − ω2 +ΠT )

]2
.(3)

In the above equation the medium modified
photon propagator contains the polarization
functions ΠL(q, ω) and ΠT (q, ω), which de-
scribe plasma screening of interparticle inter-
action by longitudinal and transverse plasma
perturbations, respectively.
To perform the momentum integration in

the phase-space factor in Eq.(2) one needs
to know the dispersion relation. In presence
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of the medium the fermionic dispersion rela-
tion gets modified due to the inclusion of the
fermion self-energy ω = Ep(ω)−ReΣ(ω, p(ω)).
For this one needs to know the fermion self-
energy. The fermion self-energy for the QCD
matter has already been quoted in [2]. In case
of electrons at low temperature with next to
leading order (NLO) correction it is given by
the following [1],

dk

dǫk
= 1 +

e2

12π2
log

(
4

πλ

)
+

22/3e2λ2/3

9
√
3π7/3

· · · .(4)

The final expression for the electron thermal
conductivity now takes the following form [1],

κee =

[
C
T 2

(1 + β)
{
2λ2ζ(3)

+
(2π)2/3

3
λ8/3ζ

(
11

3

)
Γ

(
14

3

)

+
π5

15
λ3

}]−1

, (5)

where, C = 3e4

4π5 . Unlike Fermi-liquid result
where, κee ∝ 1/T , here the temperature de-
pendence is non-analytical, anomalous in na-
ture [1]. κee involves fractional powers in
(T/mD) coming from the medium modified
phase space factor as shown above.
For the estimation of relaxation time de-

fined as τκ = 3κ
Cv

, the other quantity which
we require is the specific heat. For the degen-
erate electron gas the form of specific heat is
given in [1, 2].
With Eq.(5) and specific heat quoted in

Ref.[2] the relaxation time for thermal con-
duction is expressed as follows [1, 2],

τκee
= 3κee/

[
µ2T

3

+
m2

DT

36

(
ln

(
4

πλ

)
+ γE − 6

π2
ζ′(2)− 3

)

−40
22/3Γ

(
8

3

)
ζ
(
8

3

)
m3

D

27
√
3π7/3

λ5/3

+ 560
21/3Γ

(
10

3

)
ζ
(
10

3

)
m3

D

81
√
3π11/3

λ7/3

]
. (6)
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FIG. 1: Temperature dependence of κee and τκee .

The thermal relaxation time upto NLO terms
contains some anomalous fractional powers
originated from the transverse interaction.
This in turn changes the temperature depen-
dence of τκee

non-trivially from the Fermi liq-
uid result (τκee

∝ 1/T 2).

In Fig.(1) we have plotted κee and τκee
with

temperature using Eqs.(5) and (6). From the
plots it can be seen that inclusion of both
the medium modified propagator and β de-
crease the value of both κee and τκee

. It
shows strong deviation from the Fermi liquid
results. This has serious implication on the
total electron conductivity κe. Magnetic in-
teraction decreases κee which in turn increases
the electron-electron collision frequency as can
be seen from Eq.(1). Thus to the total electron
thermal conductivity electron-electron scat-
tering dominates over electron-ion scattering.
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