
High Energy Physics computing on heterogeneous
platforms via OpenCL

V. Singhal∗ and S. Chattopadhyay
Experimental High Energy Physics and Applications Group,

Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata-700 064, INDIA

Introduction
High energy physics experiments produces

huge amount of data, therefore needs em-
barrassingly parallel computing power. In
this direction manycore architecture is play-
ing as a pivotal role. With keeping this in
mind many hardware developer have been
building such dedicated processor other than
CPU like NVIDIA GPU (Graphical Process-
ing Unit)[1], Xeon PHI by INTEL, AMD GPU
and also in the CPU which can provide many-
core, multicore architecture like APU (Ac-
celerated Processing Unit) by AMD (earlier
ATI)[2], Cell processor by IBM etc. All these
hardware are based on SIMT (Single Instruc-
tion Multiple Thread) technology and comes
with hundreds of cores therefore architecture
wise many threads can run parallel, but all
these need different programming paradigm or
API for exploiting their power. In this direc-
tion Apple developed OpenCL (Open Com-
pute Language) managed by Khronos group
[3] API and NVIDIA came with CUDA (Com-
pute Unified Device Architecture) [1]. In this
paper we implemented a 3 dimension first level
event selection (FLES) process for MUCH
(Muon Chamber) at CBM experiment [4] via
OpenCL and executed the same on heteroge-
neous platforms including multiple GPUs and
CPUs.
OpenCL programming paradigm

In the beginning OpenCL seems diffi-
cult as far as its syntax and program-
ming procedure concerned. Writing a small
HelloWord program in OpenCL needs cre-
ating platform, device, context, queue then
writebuffer, creating source or kernel,

∗Electronic address: vikas@vecc.gov.in

enqueue kernel and readbuffer etc seems
cumbersome compare to CUDA which pro-
vide easy terminology for writing programs.
OpenCL program can be compiled via avail-
able C or C++ compiler unlike CUDA needs
another NVIDIA compiler. Once OpenCL
program written and compiled then can be
executed on any device whether GPU, CPU,
APU etc unlike CUDA program which can be
executed only on NVIDIA GPU [5]. CUDA
treats CPU as host and only NVIDIA GPU as
device, whereas OpenCL treats any hardware
as computing device, therefore once instruc-
tion queue created, that can be executed on
all the available computing resources.
FLES process and implementation

Entire process of FLES for MUCH in CBM
experiment at FAIR (Facility for Antiproton
Ion Research) Darmstadt Germany and im-
plementation of the process on the NVIDIA
Tesla C2075 GPU [6] via CUDA[1] have been
described in paper [4] and [8]. In this paper
the same process has been implemented via
OpenCL[3] onto heterogeneous platform com-
prises of multiple GPUs and CPUs.

We have used a workstation which consists
2 * Intel Xeon 2.8GHz six core processors
and 2 Nvidia GPUs one Tesla C2075 [6] and
another NVIDIA Quadro 4000 [7] for run-
ning the MUCH FLES process implemented
in OpenCL. We have generated results for the
following:- (a) Using both Intel Xeon six core
processors (12 cores of computing) (b) Using
Tesla C2075 GPU [6] (14 SMs (Streaming Pro-
cessor) running parallel in 32 warps comprises
448 cores), via CUDA and (c) OpenCL (d)
Using Quadro 4000 GPU [7], via CUDA and
(e) OpenCL respectively.
Summary and Conclusion

FIG 1 shows execution time in ms on y-
axis and number of events on x-axis for the

Proceedings of the DAE Symp. on Nucl. Phys. 58 (2013) 950

Available online at www.sympnp.org/proceedings



FIG. 1: FLES process execution time comparision

FLES process for multiple event sizes run-
ning on multiple computing devices like In-
tel Xeon CPUs and Tesla Quadro GPUs us-
ing CUDA and OpenCL. Used workstation’s
base CPU is quite powerful and also it has
24G bytes of RAM size therefore computation
time for the CPUs is the lowest compare to
others. Result shows that OpenCL code exe-
cution time is slightly more than CUDA code
execution time whether running on Tesla GPU
or Quadro GPU, because both GPUs manu-
factured by NVIDIA and CUDA programing
paradigm also developed by NVIDIA therefore
it can exploit NVIDIA GPUs efficiently as it is
customized for the NVIDIA GPUs only. Tesla
GPU is more powerful than Quadro GPU, as
many hardware differences between them like
processor speed, global memory size, number
of computing cores therefore execution time
is almost 2 times more for Quadro GPU than
Tesla GPU at very high number of events .
We can say that OpenCL programming
paradigm is more usable than CUDA
paradigm because it is open source multi plat-
form computing paradigm. Our report sug-
gests that once a program is written using
OpenCL, then can be run on multiple plat-
forms simultaneously without changing the
code. OpenCL can use all available comput-

ing units for single problem and simultane-
ously exploit all. Now these days worksta-
tion or server kind of machines have many ac-
celerating computing units like AMD GPUs
or NVIDIA GPUs on a single motherboard
connected with manycore base CPU via PCIe
slots, for this kind of system OpenCL can
provide suitable solution to use all the com-
puting units for one application and this will
also help us to achieve targeted event rate 107

events per second for FLES process of MUCH
at CBM experiment.

Future Scope of work
For parallel computation on CPU, MPI and

OpenMP can be used. As future work we will
perform the similar computation using MPI
and compare result with OpenCL result run-
ning on the CPU. In this report used FLES
process for MUCH is developed using 3 dimen-
sions X, Y, Z only, in near future we will de-
velop FLES process for MUCH using 4 dimen-
sions (time as 4th dimension). After that we
will perform computation time analysis using
CUDA, OpenCL on both CPUs and GPUs.

References
[1] NVIDIA CUDA,

http://www.nvidia.com/cuda
[2] AMD APU, http://www.amd.com/apu
[3] OpenCL, http://www.khronos.org/opencl
[4] V. Singhal et al., Proc. DAE Symp. on

Nucl. Phys. 57 (2012) 972
[5] https://devtalk.nvidia.com/default/topic/483047/simple-

question-33-can-cuda-code-be-run-on-cpu
[6] Tesla Cards,

www.nvidia.in/docs/IO/43395/NV-
DS-Tesla-C2075.pdf

[7] Quadro 4000,
http://www.nvidia.in/object/product-
quadro-4000-in.html

[8] P. P. Bhaduri et al., Proc. DAE Symp. on
Nucl. Phys. 55 (2010) 640

Proceedings of the DAE Symp. on Nucl. Phys. 58 (2013) 951

Available online at www.sympnp.org/proceedings


