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The “Hoyle state” is an excited state of the
12C nucleus with quantum numbers Jp = 0+,
slightly above the 8Be–α threshold. In red gi-
ant stars, 12C is generated via the so-called
triple-alpha process, whereby three 4He nuclei
(α particles) fuse to form 12C. However, as the
triple-alpha process cannot, by itself, explain
the observed abundance of 12C in the Uni-
verse, Hoyle postulated in 1954 the existence
of an excited 0+ state of 12C, at a very specific
energy above the 8Be–α threshold. Such res-
onant enhancement could then provide a suf-
ficiently high rate of production of 12C to ac-
count for the observed abundance [1]. Soon
afterwards, the predicted state was detected
at Caltech [2, 3], and the modern value for
its energy is ε = 379.47(18) keV above the 3α
threshold, while the total and radiative widths
are Γtot = 8.3(1.0) eV and Γγ = 3.7(5) meV.

The effects of changes in ε on the synthesis
of the life-essential elements carbon and oxy-
gen in red giant stars has been investigated nu-
merically in terms of highly sophisticated stel-
lar evolution models. Livio et al. [4] modified
the value of ε by hand and studied the triple-
alpha process in the core and shell He burn-
ing up to the asymptotic giant branch stage in
the stellar evolution. These calculations have
been refined by Oberhummer et al., who con-
cluded that the production of either 12C or
16O becomes strongly suppressed for changes
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larger than δ(ε) ≃ ±100 keV in the position of
the Hoyle state [5, 6]. In essence, if ε is lowered
too much, the triple-alpha process ignites at
a significantly lower stellar core temperature,
and hence little energy is available for the pro-
cess 12C + 4He → 16O + γ. Conversely, if ε
is raised too much, the triple-alpha process ig-
nites at a much higher core temperature, and
hence most of the 12C formed is immediately
converted into 16O and 20Ne already before
the conclusion of core He burning. However,
since a change of ±100 keV in ε could still be
tolerated, which is a ∼ 25% modification, the
fine-tuning was revealed to be less severe than
originally believed [7].

Nevertheless, the translation of these astro-
physical findings into anthropic constraints on
fundamental parameters requires a direct con-
nection of δ(ε) to the fundamental theory of
the strong interactions, Quantum Chromody-
namics (QCD) and its fundamental parame-
ters, the light quark masses mq. We address
this question by means of an ab initio cal-
culation of the sensitivity of ε to changes in
mq and the electromagnetic (EM) fine struc-
ture constant αem. For this purpose, we carry
out large-scale numerical lattice calculations
for the energies and energy differences relevant
to the triple-alpha process within the frame-
work of chiral Effective Field Theory (EFT).
The discretized (lattice) version of chiral EFT
was formulated in Ref. [8] (see Ref. [9] for a
recent review). We have successfully applied
this novel approach to the spectra and prop-
erties of light nuclei [10], to dilute neutron
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FIG. 1: “Survivability bands” for carbon-oxygen
based life from Eq. (1), due to 0.5% (broad outer
band), 1% (medium band) and 5% (narrow inner
band) changes in mq in terms of Ās and Āt (dat-
apoint from N2LO analysis of Ref. [14]).

matter [11], and to the structure of the Hoyle
state [12]. Our findings for the triple-alpha
process have been reported in Ref. [13].

From our nuclear Lattice EFT results, we
find that the condition |δ(ε)| < 100 keV corre-
sponds to a predicted tolerance |δαem/αem| ≃
2.5% of carbon-oxygen based life to shifts in
αem. This result is compatible with the ≃ 4%
bound reported by Ref. [6]. For shifts in mq,
we find∣∣∣∣∣[0.572(19) Ās + 0.933(15) Āt − 0.064(6)

]
×
(
δmq

mq

) ∣∣∣∣∣ < 0.15%, (1)

in terms of the slopes of the inverse scattering
lengths a−1

s and a−1
t at the physical pion mass,
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∂a−1

s

∂Mπ
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Mph

π

, Āt ≡
∂a−1

t

∂Mπ

∣∣∣∣
Mph

π

, (2)

where the subscripts s and t denote the spin–0
(1S0) and spin–1 (3S1) NN partial waves. The
most up-to-date N2LO analysis of Ref. [14]
gives Ās ≃ 0.29+0.25

−0.23 and Āt ≃ −0.18+0.10
−0.10,

shown in Fig. 1, superimposed on the Lattice

EFT bounds. In spite of the relatively large
uncertainties, Fig. 1 shows that our Universe
is not extremely fine-tuned with respect to the
Hoyle state. The uncertainties in Ās and Āt

will be significantly reduced by upcoming Lat-
tice QCD calculations.
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