*M. Singh¹, Pradeep Kumar¹, Y. Singh², A. K. Varshney³, and D. K. Gupta⁴

¹ Department of Physics, NIET, Gr. NOIDA-201306 (U.P.), INDIA
²Govt. College, Dharamshala – 176215, (H. P), INDIA
³R.G.M. Govt. P.G. College, Jogindar Nagar (HP), INDIA
⁴SSLD Varshney Girls Engineering College, Aligarh – 202001 (U.P.), INDIA

*Email: <u>singh.moti@gmail.com</u>

²³²Th is a well deformed nucleus having parameter $\gamma = 10^{\circ}$. asymmetric The experimental energy gap $E3_1^+ - (E2_2^+ + E2_1^+)$ is 4 KeV only. One of the other important parameter which hints at shape of the nucleus is the energy difference $\Delta E = E3_1^+ (2E2_1^+ + E4_1^+)$ whose value for ²³²Th is 570, which is supposed to be zero for $\gamma - \text{soft}$ nucleus. This is a significant indicator to consider this nucleus as rigid rotor. The OES effect represents the relative displacement of the odd angular momentum levels of the γ band with respect to their neighbouring levels with even angular momentum. This is a long known effect which is clearly established in even - even nuclei [1]. As far as odd even staggering (OES) in γ – band is considered, it is supposed to show very little value for staggering indices S(I) at low spin and low energy. But, while S (I) calculated using following relation -

$$S(l) = \frac{[E(l+1) - E(l)] - [E(l) - E(l-1)]}{E2_1^+}$$

an experimental staggering indices are plotted vs. spin for 232 Th, it exhibits the zigzag variation from S (4) to S (8) without change in sign (all positive). The sign of staggering indices has reversed for S (9) and S (10). The nucleus is one among the five that shows the staggering associated with triaxial shapes according to McCutchen et al [2] who plotted S (I) versus angular momentum (I) exhibiting minimum value of S (I) at odd angular momentum. The general behavior of the odd – even staggering in rotational region has been studied in terms of the ground – γ band mixing interaction using Vector Boson Model (VBM)

[3]. The new relation is used to study the OES in γ – band as –

$$Stg(L) = [10E(L + 1) + 5E(L - 1) + E(L + 3)] - [10E(L) + 5E(L + 2) + E(L - 2)]$$

They obtained a clearly pronounced staggering pattern i.e. a zigzagging behavior of the quantity Stg (L) as a function of angular momentum (L). A regular change in signs of Stg (L) between odd and even levels with the amplitude increasing with angular momentum up to L = 12 - 13. Their method has been quoted as most effective one for the studying OES in collective γ – band ($\Delta L = 1$).

We undertake the present work to treat 232 Th with a soft rotor formula used recently by C. Bihari et al [4] for γ – band and modified by J. B. Gupta et al [5]. It describes energy in terms of moment of inertia and softness parameter –

$$E(I) = E_K + \frac{I(I+1)}{2\theta_0(1+\sigma I)}$$

The energies have been calculated using two parameters i.e. moment of inertia and θ_{γ} and get energy constant E_{κ} . Interestingly the value of softness parameter (σ) is found to be zero (Table – I) which is expected also for rigid rotor.

At low spin and low energy, there is an excellent matching in SRF values with experimental values. Being $\sigma = 0$, it is inferred that nucleus while rotates and generate γ – band up to spin I = 7, there is no centrifugal stretching or coriolis interaction. Thus Nucleus may be rigid. The staggering indices S (L) in

Available online at www.sympnp.org/proceedings

experiment has been listed in table II. The alternative positive and negative values from S (8) onwards in table II indicate the γ – soft nature of nucleus and thus there is a phase transition at spin I = 8.

We have taken transition rates for the consideration and for the test of phase transition at I = 8 (table III). The increasing trend of experimental cascade in rotational band is reversed at $10_1^+ \rightarrow 8_1^+$. Although, more information is needed for looking at trend of transition rates in γ – band also to comment with confidence on phase transition but the values of these B (E2) rates have been found to be close to the rigid rotor estimates.

Table – I

 γ – band energies in KeV calculated from SRF

Parameters: $E_k = 0.74$, $\sigma = 0$, $\theta_{\gamma} = 66.67$				
Energy	Exp	SRF		
21	785	785		
3 ⁺	829	830		
4^{+}_{2}	890	890		
4 ⁺ 5 ⁺ ₁	960	965		
61	1051	1055		
7_{1}^{-1}	1142	1160		
8^{+}_{2}	1260	1230		
9 ⁺ ₁	1370	1415		
10 ⁺ 2	1513	1565		
11^+_1	1640	1730		

Table II

Staggering	indices	for	²³² Th
------------	---------	-----	-------------------

S(4)	+0.33
S(5)	+0.19
S(6)	+0.42
S(7)	+0.006
S(8)	+0.53
S(9)	-0.15
S(10)	+0.65
S(11)	-0.31

Transition	Exp.	Rigid rotor
$2_1{}^+ \rightarrow 0_1{}^+$	1.850	1.800
$2_2{}^+ \rightarrow 0_1{}^+$	0.024	0.049
$2_2^+ \rightarrow 2_1^+$	0.055	0.088
${\bf 6_1}^+ \rightarrow {\bf 4_1}^+$	3.110	2.980
$8_1^+ \rightarrow 6_1^+$	5.450	3.160
$10_1^+ \rightarrow 8_1^+$	4.990	3.280

Table III

 $B(E2, I_f \rightarrow I_i)$ as e^2b^2 for ²³²Th

The suggestions of ref. [6] for taking moment of inertia of γ – vibrational band as 4.36 times that of the moment of inertia of ground rotational band seems to be irrelevant. In the present work $\theta_{\gamma} = 66.67$, $\sigma = 0$ for γ – rotational band and the value of the θ_g is 60.8 for yrast band. This is significant here that θ_g and θ_{γ} are nearly same as the value of $\theta_{\gamma} = 66.67$ and both of the bands are taken as rotational. The moment of inertia for rotation to produce yrast and γ – band are nearly same which contradicts Jolos and Brentano view point [6]. At the same time both the bands are found to be rotational in the present study.

References:

- A. Bohr and B. Mottelson; *Nuclear Structure Physics* (Benjamin, New York, 1975), Vol. II.
- 2. E.A. McCutchen et al PRC 76, 024306 (2007).
- 3. N Minkov et al PRC 61, 064301(2006)
- 4. C. Bihari et al Phy. Scr. 77, 055201 (2008).
- 5. J.B. Gupta et al Pramana 81, 75 (2013)
- R.V. Jolos & P. Von Brentano PRC 76, 024309 (2007)