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Introduction 
 

Developments over last few decades have 
given a good amount of reliability to the 
relativistic approach for the analysis of proton 
nucleus elastic scattering, particularly in the span 
of intermediate energies. 

Here, we have adopted the relativistic Dirac 
phenomenological approach [1] to study the 
Analyzing Power (Az) calculated for  p�⃗ +

Ca  & Pb20840  elastic scattering at 200 MeV. In 
our analysis we have used three different nuclear 
ground state densities for both the targets. These 
densities are represented as LRAY, CHMX (as 
taken in ref. [2]) and NEG [3]. LRAY and 
CHMX are the experimental densities which 
incorporate medium corrections whereas NEG 
densities are purely theoretical microscopic 
densities for both the targets. To check the mass 
dependence we have calculated Az for two 
different targets i. e. 40Ca and 208Pb.  

In this approach the relativistic Dirac 
equation is reduced to the second order 
differential equation called as Schrödinger 
equivalent equation. This equation contains Ueff 
and Uso which represent the central and spin-
orbit potentials respectively. These Ueff and Uso 
potentials are obtained in terms of scalar (Us) 
and time-like component of the vector 
(U0) potentials during reduction. The real parts 
of Us and U0 potentials are calculated from the 
folding model using nuclear ground state 
densities [1], whereas the imaginary parts have 
been taken directly from ref. [4]. Under folding 
model these potentials retain the shape of the 
densities used in their calculations. Ueff and Uso 
are very sensitive to the shape of Us and U0 
potentials. If the densities used for the respective 
target are not realistic then Us and U0 R will not 
yield accurate Ueff and Uso potentials and hence 
the data reproduction for scattering observables 

will not be satisfactory. So, in our analysis we 
can easily pin-point which density is more 
reliable. 

Further the comparison of Az data 
calculated by fitting, using LRAY, CHMX and 
NEG densities for each target i.e. Ca  & Pb20840  
manifests the importance of the medium 
corrections as well as the mass dependence. 

The strengths of real and imaginary parts of 
complex Us and U0 potentials are multiplied 
with their respective normalization constants
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potentials are then renormalized varying these 
λ’s through chi-square minimization to fit the 
experimental data of elastic scattering 
observables. The values of  λ’s, if close to unity 
implies the accuracy of Us and U0 potentials and 
hence that of the nuclear matter densities 
involved. 

 
Formalism    

The Dirac equation is used in the mean 
field approximation in which the nucleon 
(meson) fields are replaced by their expectation 
values. Proton-nucleus scattering is then 
described using isoscalar-scalar and isoscalar-
vector mean fields. Here, these are taken, 
respectively, as a spherically symmetric complex 
Lorentz scalar potential Us  corresponding to the 
σ meson field and a spherically symmetric 
complex Lorentz vector potential  U0 (time-like 
component of Lorentz four-vector), 
corresponding to the ω meson field, together 
with a spherically symmetric Coulomb potential 
Vc. With this scalar-vector interaction the Dirac 
equation becomes   (ℏ = 𝑐𝑐 = 1) 
[α��⃗ ∙ p�⃗ + β(m + Us)]ψ = [E − U0 − Vc]ψ,       (1)     
where Ψ is a four-component Dirac spinor with 
upper (ΨU) and lower (ΨL) components, E is the 
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total energy of the scattered nucleon in the c.m. 
frame, α


 and β  are four Hermitian operators. 

 The second order reduction for the upper 
component ΨU yields, 

�p2 + Ueff + Uso ��σ��⃗ . L�⃗ � − i(r⃗. p�⃗ )��ψU = 
                                  [(E − Vc)2 − m2]ψU ,      (2) 
where Ueff   is given by, 

Ueff =
1

2E
[2EU0 + 2mUs − U0

2 + Us
2 − 2VcU0], 

                                                                           (3) 
here 2VcU0  is the Coloumb correction term. 
The corresponding spin-orbit term Uso is 

Uso = −
1

2E
�
1
r
�

1
E + m + Us − U0 − Vc

� ×� 

                                       � ∂
∂r

(Us − U0 − Vc)�.     (4) 

Once Us and U0 potentials are known Ueff 
and Uso can be solved easily using eqs. 3 & 4. 
With these Ueff and Uso potentials, eq. 2 can be 
solved further for scattering observables. 

 
Result and Discussion 
 

Here we have allowed the strengths of the 
complex Us and U0 potentials to vary in chi-
square fitting, but the geometries of these 
potentials are kept constrained. 

As is clear from Fig.1(a), Analyzing Power 
at 200 MeV for  p�⃗ + Ca40  is satisfactorily 
reproduced at forward angles by all the curves 
obtained using LRAY, CHMX and NEG 
densities. The curves corresponding to LRAY 
and CHMX densities are quite close to each 
other at all angles throughout the data though not 
reproducing the data well at higher angles. The 
curve obtained using NEG densities follow the 
data somewhat more closely even at higher 
angles although these (NEG) densities do not 
incorporate medium corrections. This shows that 
for p�⃗ + Ca40  elastic scattering at 200 MeV the 
geometry parameters of nuclear densities are 
more predominant compared to the medium 
corrections. Thus, one can conclude that NEG 
densities are better compared to the LRAY and 
CHMX densities particularly in this case. 

 When the Analyzing Power (Az) is 
calculated for p�⃗ + Pb208  elastic scattering at 200 
MeV it is found that the graphs obtained with 
LRAY and CHMX densities are close to the data 

compared to the graph obtained with the NEG 
densities at forward angles (Fig. 1 (b)). This may 
be attributed to the medium corrections which 
are incorporated in the LRAY and CHMX 
densities. All these graphs start deferring from 
data points as well as from each other at higher 
angles but still the graphs corresponding to 
LRAY and CHMX densities are comparatively 
closer to the data points at all angles.  Again this 
shows the relevance of the medium corrections 
for heavier targets. 
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 At higher angles none of the graph is 
satisfactorily close to the experimental data of   
Analyzing Power for p�⃗ + Pb208  elastic scattering 
at 200 MeV. It simply implies that the geometry 
parameters of Us and U0, which are governed by 
the form of the densities employed, are playing a 
crucial role particularly in reproducing the data 
at higher angles. This effect is quite obvious in 
case of  p�⃗ + Pb208  (Fig. 1(b)) rather than for 
p�⃗ + Ca40  elastic scattering (Fig. 1 (a)).  
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