Target Coulex and the Production of Po Isotopes by Fusion Evaporation Reaction

Md. A. Asgar,* T. Roy, G. Mukherjee, Soumik Bhattacharya, S.
Bhattacharyya, C. Bhattacharya, S. Bhattacharya, A. Chaudhuri,
K. Banerjee, S. Kundu, S. Manna, R. Pandey, and J.K. Meena
Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata-700064, India

R. Palit, S. Biswas, S. Saha, J. Sethi, P. Singh, and D. Choudhury Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, India

Introduction

In order to investigate the high spin states in neutron deficient Po (Z=84) nuclei in the 190-200 mass region, we have used 32 S + 169 Tm reaction. The estimated (by PACE-IV) cross-sections for the above Po isotopes are small (about 10 mb) in the above reaction. To increase the yeild a thick (10 mg/cm²) 169 Tm target was used. As a result large amount of Coulomb excitation data for 169 Tm were obtained. Here we are presenting the data obtained for the Po isotopes as well as the Coulomb excitation lines of 169 Tm.

Experimental Procedure and Data Analysis

The γ -ray spectroscopy experiment has been carried out at the 14-UD BARC-TIFR Pelletron Linac Facility at Mumbai, India, using 19 clover HPGe detectors with BGO anti-Compton shields of INGA collaboration. ^{196,197}Po nuclei were populated in the fusionevaporation ¹⁶⁹Tm(³²S,pxn) reaction at a beam energy of 164 MeV (optimized for ¹⁹⁷Po) using ¹⁶⁹Tm (10 mg/cm²) target. The clover detectors were arranged at six angles with three clovers each at $\pm 40^{\circ}$ and $\pm 65^{\circ}$ and -23° while four clovers were at 90° angles. A digital data acquisition system [1] was used for collecting the in-beam data. Two and higher folds coincidence data were taken. γ - γ matrix

FIG. 1: Single gated spectrum at 323keV(top panel)and sum of double gated(bottom panel) spectrum confirms the Coulomb excitation lines in 169 Tm.

and γ - γ - γ cube have been formed and analyzed by RADWARE and MARCOS codes.

Results and Discussion

Single and double gated spectra corresponding to the gamma lines in $^{1\bar{6}9}$ Tm are shown in Fig.1. The spectrum in the top panel is obtained by gating on 323 keV γ transition projected from $\gamma - \gamma$ matrix and the spectrum in the bottom panel is the sum of double gated spectrum projected from $\gamma - \gamma - \gamma$ cube. The level scheme of 169 Tm is shown as the inset in Fig.1. The Coulomb excitation γ lines in 169 Tm [2] can be clearly seen and identified. Two high-lying γ lines namely, 394 and 494 keV, which were tentative in a previous work [3] and observed in a later work [2] have been confirmed in the present work. In the very preliminary analysis on ^{196,197}Po, the previously known γ -lines of ¹⁹⁷Po [4], except the tentative ones, have been confirmed and indication of

^{*}Electronic address: aliasgar@vecc.gov.in

FIG. 2: Single gated spectra at 483 keV (Top) and 463 keV (Bottom) showing the known γ transitions in ^{197,196}Po.

new γ -transitions in this nucleus has been observed. A few low lying γ -transitions in ¹⁹⁶Po [5] have also been observed. Two gated spectra are shown in Fig.2, corresponding to ¹⁹⁷Po (top) and ¹⁹⁶Po (bottom).

The aligned angular momentum (i_x) for odd-A Tm nuclei are shown in Fig.3. It can be seen that there is a backbending corresponding to a pair of neutron alignment in 165 Tm at rotational frequency of $\sim~0.3~{\rm MeV}$ with a gain in alignment of $\sim 9\hbar$. In the contrary, the alignment in ¹⁶⁷Tm is rather gradual and approaching the same gain in alignment. However, the data on the heavier Tm isotopes 169,171 Tm are limited to below their band-crossing region. The energy staggering S(I) for the odd-A Tm isotopes are plotted in Fig. 4. It also shows somewhat different behaviour for the heavier Tm isotopes compared to ¹⁶⁵Tm after the backbending. However, for a better comparison, more data on ^{169,171}Tm are needed. In the present work, we are trying to extend the level scheme of 169 Tm.

Conclusion

In our preliminary analysis the known Coulomb excitation lines of 169 Tm have been confirmed. Information on the high spin states in 169 Tm are very important for the systematic comparison of the Tm isotopes. Most of the known γ -transitions in 197 Po have been observed along with some of the γ -transitions

FIG. 3: Aligned angular momenta (i_x) as a function of rotational frequency $(\hbar\omega)$ for odd-A Tm isotopes. $J_0 = 35 \ \hbar^2/MeV$ and $J_1 = 43 \ \hbar^4/MeV^3$.

FIG. 4: Signature splitting S(I) of rotational bands as a function of spin(I) in odd-A Tm isotopes.

in ¹⁹⁶Po. The detailed analysis is in progress.

Acknowledgement

We thank BARC-TIFR PLF operators for providing good quality ³²S beam and the INGA collaboration. We also thank A. Mahadkar for target preparation. **References**

- R. Palit et al., Nucl. Instrum. and Meth. in Phys. Research A 680, 90 (2012).
- [2] M.P. Robinson et al., NIM A 647, 175 (1999).
- [3] P. Taras et al., NPA **289**, 165 (1977).
- [4] D.R. Wiseman et al., EPJ A 34, 275 (1999)
- [5] T. Grahn et al., PRC 80, 014323 (2009).