High Spin Spectroscopic Study of a few nearly spherical nuclei in A \sim 150 region

H. Sultana¹, A. Chakraborty¹,* R. Bhattacharjee², S.S. Bhattacharjee², S.K. Das², S. Samanta², S.S. Ghugre², R. Raut², A.K. Sinha³, L. Chaturvedi⁴, B.K. Yogi⁵, A. Jhingan⁶, N. Madhavan⁶, S. Muralithar⁶,

S. Nath⁶, R.P. Singh⁶, P. Sugathan⁶, and Krishichayan^{7,8} ¹Department of Physics, Siksha Bhavana,

Visva-Bharati, Santiniketan, West Bengal 731 235

² UGC-DAE CSR, Sector III, LB-8, Bidhan Nagar, Kolkata 700 098

³UGC-DAE CSR, Indore 452 017

⁴Guru Ghasidas University, Bilaspur 495 009

⁵Department of Physics, Govt. College, Kota 324 009

⁶Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067

⁷Department of Physics, Duke University, Durham, NC 27708, USA and

⁸ Triangle Universities Nuclear Laboratory, Durham, NC 27708, USA

Introduction

The investigation of high-spin states of doubly magic nuclei and their neighborhood provide important testing ground for shell model calculations. So far as the nuclei in A ~ 150 region are concerned, the doubly closed shell structure (Z = 64 and N = 82) persists in ¹⁴⁶Gd. Doubly closed nature of ¹⁴⁶Gd is indicative of a sharp increasing energy value of 2_1^+ state (see Fig. 1(a)) and decreasing value of R_{42} (see Fig. 1(b)). The present work deals with the spectroscopic study of a few nuclei lying within the vicinity of Z \sim 64 and N \sim 82 shell-closures. It is a matter of common fact that high-spin level structures of shellmodel type nuclei, in general, is very irregular in nature and this makes the spin and parity assignments of the underlying levels much more difficult. Extensive angular correlation and polarization measurements are needed for unambiguous assignments of spins and parities of the levels observed up to the highest value of excitation. In this direction, we carried out an experiment to obtain high statistics $\gamma\gamma$ coincidence data and preliminary results from the experiment are presented here.

FIG. 1: Variation of (a) energy of 2^+_1 states and (b) R₄₂ values along the chain of Sm-, Gd-, and Dy-isotopes. Here, R₄₂ represents the ratio between the energy of the 4_1^+ and 2_1^+ states.

Experimental Procedure

The experiment was carried out using the 15UD Pelletron facility at IUAC, New Delhi. An enriched ¹¹⁵In target of $\sim 1.20 \text{ mg/cm}^2$ thickness with a $\sim 9.46 \text{ mg/cm}^2$ Au backing was used. De-excited gamma rays were detected using the Indian National Gamma Array (INGA) consisting of sixteen number of Clover detectors. These detectors were placed at 57° (4 detectors), 90° (5 detectors), 123° (4 detectors), and 148° (3 detectors) with respect to the beam direction. The data were analvzed using RADWARE and IUCSORT software packages [1]. The coincidence events were sorted into symmetric and asymmetric (angle dependent) matrices for off-line analy-

^{*}Electronic address: anagha.chakraborty@ visva-bharati.ac.in

sis. Proper care was made for the correction of on-line drift and gain matching. About 9 \times $10^8 \gamma \gamma$ coincidence data were collected during the experiment. The use of angle dependent asymmetric matrices are helpful for undertaking angular correlation measurements. These correlation measurements in coincidence mode provide necessary information for the assignment of multipolarities of the decaying transitions. The use of Clover detectors provide an added advantage for polarization measurements which would be helpful in determining the electric or magnetic nature of the decaying transitions, so that the unambiguous assignments of parities for the concerned excited levels could be made possible.

Experimental Results and Discussion

The representative coincidence spectra for a few nuclei populated in the experiment are shown in Fig.2. It is obvious from the figure that the nucleus, ¹⁴⁶Tb populated with highest statistics followed by ¹⁴⁶Gd and ¹⁴⁵Tb. Previous investigations of these nuclei reveal the existence of quasi-regular type of dipole band structure (apparently follows I(I+1) relation) at high excitation. As for example, a ΔJ = 1 dipole band is found to develop in 145 Tb at $E_x \sim 6$ MeV with J = 37/2 [2], whereas a similar type of band exists at $E_x \sim 8$ MeV with $J^{\pi} = (23^{+})$ in ¹⁴⁶Tb [3]. For ¹⁴⁶Gd, dipole band like structure appears to develop at E_x ~ 12 MeV [4] and the spin-parity of the band head is not known. The coincidence statistics of our present experimental data is found to be almost an order of magnitude more than that obtained in the previous investigations. Thus, it is expected that the complete analvsis of the data would lead to assign firmly the spin-parities of the members of the aforementioned bands. These informations would be the first step towards the possible establishments of "shears" band like structure in these nuclei. This type of band like structure has already been established in the neighboring nuclei such as ^{142,143,144}Gd, ¹⁴¹Eu [5] etc., and more recently in ¹⁴³Eu [6]. Possibility of observation of "shears" band like structure

FIG. 2: Part of the γ spectra obtained from coincidence (a) sum gates of 640 keV $(13/2^- \rightarrow 11/2^-)$ and 906 keV $(15/2^- \rightarrow 11/2^-)$ of ¹⁴⁵Tb; (b) gate of 1580 keV $(3^- \rightarrow 0^+)$ of ¹⁴⁶Gd; (c) gate of 590 keV $(11^+ \rightarrow 10^+)$ of ¹⁴⁶Tb. In case of ¹⁴⁵Tb, sum gates are used because of the two possible decay branches to the ground state.

in this mass region is due to the availability of high-j $(h_{11/2})$ proton and neutron orbitals and irregular nature of the observed dipolelike bands in ^{145,146}Tb may be because of their close proximity to Z ~ 64 and N ~ 82 shell closures.

Acknowledgments

This material is based upon work supported by UGC-DAE CSR, Kolkata under its Collaborative Research Scheme (UGC-DAE-CSR-KC/CRS/13/NP04/ & UGC-DAE-CSR-KC/CRS/13/NP04/02).

References

- D.C. Radford, Nucl. Instrum. Methods Phys. Res. A **361**, 297 (1995); N.S. Pattabiraman *et al.*, Nucl. Instrum. Methods Phys. Res. A **526**, 432, 439 (2004)
- [2] Y. Zheng *et al.*, J. Phys. G: Nucl. Part. Phys. **30**, 465 (2004)
- [3] Krishichayan *et al.*, Phys. Rev. C 70, 044315 (2004)
- [4] C. Schumacher *et al.*, Phys. Rev. C 52, 1302 (1995)
- [5] T. Rzaca-Urban, Acta Phys. Pol. B 32, 2645 (2001); R.M. Lieder *et al.*, Eur. Phys. J. A 13, 297 (2002) Z Marcinkowska *et al.*, Acta Phys. Pol. B 34, 2319 (2003)
- [6] S. Rajbanshi *et al.*, Phys. Rev. C **90**, 024318 (2014)