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Introduction 
 

The physical origin of Staggering was 

noticed by evaporation models due to interplay 

between pairing effects in the nuclear masses and 

level densities.  This observation suggests that 

these odd–even effects are low temperature ones 

associated with evaporation phase [1].  In finite 

nuclear system, the odd-even staggering (OES) 

is attributed to the existence of nucleonic pairing 

correlations [2].  Staggering phenomenon has 

been observed in several quantities, such as 

nuclear binding (separation) energies, nuclear 

charge radii, back bending and heat capacity of 

finite fermion systems.  In nuclei, OES has been 

attributed to an experimental evidence of pairing 

correlations [3].  In this work, the staggering 

effect is examined in level density, back-shift 

parameter and heat capacity of 
55,56,57,58

Fe 

isotopes, which highlight the critical role of 

pairing correlations. 

 

Formalism 
At present, statistical theory is used to 

evaluate OES effects.  The logarithm of the 

grand partition function for the Z protons of the 

superfluid nuclei at a temperature T using the 

BCS formulation is given by 
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proton quasiparticle energies.  Gz is the pairing 

strength and 
Z∆ is the gap parameter.  The 

quantity β is the reciprocal of the temperature 

(β=1/T) and µz is the proton chemical potential.  

A systematic procedure is adopted to determine 

the grand canonical partition function for the 

superfluid nuclei at a temperature (T) with 

conserved particle number (Z), energy (E) and 

angular momentum (M) of the system and is 

fixed by the saddle point equations.  A similar 

set of equations for neutrons N also exists.  The 

inputs for the statistical theory are the 

microscopic single - particle levels and single-

particle spins corresponding to the triaxially 

deformed Nilsson harmonic oscillator potential.  

The (κ, µ) pair used for generating the single-

particle level scheme upto N = 11.  The detailed 

computation is delineated in our earlier 

publication [4].  

 

To evaluate the staggering phenomenon, 

we calculate the nuclear level density using the 

back – shifted Bethe formula (BBF) 
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Here, the effective single particle level density 

parameter is extracted using the expression    
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and the back shift parameter )(δ  is given by 

  T+= 2aT - *E  δ .       (3) 

The heat capacity of the system can be 

determined from 
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The excitation energy of the system is                         
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where E  is the total energy and 
0E  is the 

ground state energy. 

Entropy (S) of the nuclear system is given as 
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Results and Discussion 
 

The back-shift parameter (δ) is displayed as 

a function of mass number ‘A’ for 
52 - 58

Fe 

isotopes in fig.1.  Here, the solid line denotes the 

calculated δ which describes the odd-even 

staggering due to pairing effects.  The Shell 

Model Monte Carlo (SMMC) calculation 

(dashed line) and the experimental value (closed 

circle) also plotted for comparison.  In a typical 

empirical formula, δ is close to zero for odd-even 
nuclei, positive for even-even nuclei, and 

negative for odd-odd nuclei. Microscopic 

calculation is closely in agreement with the 

SMMC and experimental data [5].  
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Fig. 1 Mass dependence of back-shift parameter   

          for iron isotopes. 

  

In fig.2, the level density is shown as a 

function of excitation energy.  The level density 

increases against excitation energy and it 

depends upon the mass of the isotopes because 

of staggering.    
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Fig. 2 Logarithmic variation of the level density  

          ρ with the total excitation energy E
* 
.       

 

Fig.3 shows the temperature dependence of 

heat capacity for 
55,56,57,58

Fe isotopes.  A smooth 

bump is obtained around the critical temperature 

region T ~ 0.8 to 0.9 MeV, indicating the 

second-order pairing phase transition.  Here, the 

heat capacity increases with mass due to the 

increase of the density of states with mass.   In 

fig.3, the heat capacity of 
57

Fe is below that of 

both 
56

Fe and 
58

Fe.  It depicts that the heat 

capacity of an odd-mass nucleus is significantly 

lower than that of the adjacent even-mass nuclei.  

Therefore, the thermal signatures of pairing 

correlations are identified through odd-even 

effects in the heat capacity which is in 

accordance with the SMMC method.  From all of 

these criteria, it is argued that the pairing 

correlations play a vital role in these OES 

phenomenon. 
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Fig. 3 Temperature dependence of heat capacity  

          for 
55,56,57,58

Fe isotopes.  

 

Acknowledgement 
 

This work is supported by the Department 

of Atomic Energy Board of Research in Nuclear 

Science, India under the project 

(No.2012/37P/37/BRNS/2017).  

 

References 

[1] B. Mei et al., Phys.Rev.C 89, 054612 

(2014).  

[2] Vidya Devi, Turk J Phys 37, 330-347 

(2013). 

[3] S. A. Changizi and C. Qi, Phys.Rev.C 91, 

024305 (2015). 

[4] T. R. Rajasekaran et al., Eur. Phys. J. A 35, 

57–68 (2008); Acta Physica Polonica B 39, 

6 (2008).  

[5] Y. Alhassid et al., Phys.Rev.C 83, 21 

(1999). 

Proceedings of the DAE-BRNS Symp. on Nucl. Phys. 60 (2015) 281

Available online at www.sympnp.org/proceedings


