Study of direct and sequential break-up reactions in ${}^{6}Li+{}^{112}Sn$ system

D. Chattopadhyay^{1,2},* S. Santra^{1,2}, A. Pal^{1,2}, A. Kundu¹, B. K. Nayak^{1,2}, K. Mahata^{1,2}, K. Ramachandran¹, R. Tripathi³, V. V.

Parkar¹, G. Kaur⁴, D. Sarkar¹, S. Sodaye³, B. Pandey⁵, and S. Kailas¹

Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, INDIA

²Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, INDIA

³RadioChemistry Division, Bhabha Atomic Research Centre, Mumbai - 400085, India ⁴Panjab University, Chandigarh - 160014, India and

⁵Institute For Plasma Research, Gandhinagar, Gujarat - 382428, India

Introduction

The ⁶Li projectile while moving in the field of a target nucleus can not only dissociate into α +d but it can also first exchange a few nucleon with the target and then break up into two fragments [1]. Identification of all these processes is important to understand the break-up mechanism of ⁶Li projectile and also to find the origin of the high yield of alpha particle production in such a reaction.

In this Paper, we present the exclusive measurement of breakup cross sections in $^{6}\text{Li}+^{112}\text{Sn}$ reaction exploring the above possibilities. Cross sections for both sequential as well as direct breakup are measured and compared with the theoretical calculations. The measured elastic scattering angular distributions [2] were used as a constraint to the potential parameters that were used in the calculations to explain both elastic scattering and the breakup processes simultaneously.

The experiment

The cross sections for ⁶Li+¹¹²Sn system have been measured at a bombarding energy of 30 MeV using BARC-TIFR Pelletron facility at Mumbai. Self- supporting ¹¹²Sn foil of thickness~540 $\mu g/cm^2$ was used as target. Two Si-strip detector telescopes of active area $5 \ge 5 \text{ cm}^2$ (thicknesses $\Delta E \sim 50 \ \mu m$, $E \sim 1500 \ \mu m$) with angular coverage 16.5° each were used for coincidence measurements (multiplicity=2) of outgoing fragments. Four telescopes of Si-surface barrier detectors (of thicknesses $\Delta E \sim 50 \ \mu m$, $E \sim 1000 \ \mu m$) with 9 mm collimator diameter each, were used for measurements in coincidence for breakup fragments as well as in singles for elastic/inelastic scattering and inclusive alpha/deuteron productions. Two Sisurface barrier detectors (of thicknesses ~ 300 μ m) kept at $\pm 25^{\circ}$ were used to monitor incident flux by measuring the Rutherford scattering.

Data analysis

In order to identify the prominent breakup channels with excitation energies, relative energy spectra were derived from the measured coincidence data for α +d, α +p and $\alpha + \alpha$ particles detected at any 2 out of 32 strips as shown in Fig. 1. A huge peak at $E_{rel}=0.092$ MeV corresponds to breakup of ⁸Be at its g.s. into two α particles, the peak at $E_{rel}=0.71$ MeV correspond to breakup into $\alpha + d$ via the 3⁺ (2.18 MeV) resonant

^{*}Electronic address: dipayan@barc.gov.in

FIG. 1: Relative energy spectra.

FIG. 2: Q value Spectra.

state of ⁶Li and the peak at E_{rel} =1.97 MeV correspond to breakup into $\alpha + p$ via g.s. of ⁵Li. From the Q-value spectra obtained from the above data to know overall excitations, shown in Fig. 2, it was found that breakup into α +d and α +p is more favorable at optimum Q value. In $\alpha + \alpha$ spectrum, different peaks correspond to different excited states of ¹¹⁰In.

The experimental differential cross-

FIG. 3: Angular distribution of breakup crosssection.

sections of these channels are shown in Fig. 3. The continuum discretized coupled channels calculations using FRESCO have been performed with projectile excitation up to 8 MeV in the continuum for both direct and sequential break-up cross-sections of ${}^{6}\text{Li} \rightarrow \alpha + d$ and compared with the experimental data. The sequential breakup, via the resonant state $(3^+$, 2.18 MeV) of ⁶Li dominates the total α +d breakup. Coupled reaction channel calculations were performed to obtain the cross sections for transfer induced breakup cross sections for ⁶Li \rightarrow ⁵Li $\rightarrow \alpha$ +p which reasonably reproduce the experimental data. All the breakup channels mentioned above produce α as one of the breakup fragments which also explains why the measured inclusive alpha yield is so large.

References

- S. Santra *et al.*, Phys. Lett. B **677**, 139 (2009).
- [2] S.Santra, D.Chattopadhyay *et al.* Proc. NN2015 Conference (2015).