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Introduction

The Woods-Saxon potential has taken a
great deal of interest over the years and has
been one of the most useful model to deter-
mine the single particle energy levels of nuclei
and the nucleus-nucleus interactions [1]. The
Woods-Saxon potential is given by
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where Vj represent the depth of the potential.
R and a are the radius of the potential and the
width of the surface diffuseness, respectively.

In this work we have considered Woods-
Saxon potential for the numerical calcula-
tion of eigenvalues by using matrix Numerov

method [2].
Theory

Numerovs method is a numerical method
developed by Boris Vasilevich Numerov [3, 4].
This method is used to solve ordinary dif-
ferential equations of second order in which
the first-order term does not appear, which is
given by
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The time independent 1—D Schroedinger
equation
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can be written into the form of (1) as
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Where

@) = T ey = 2 gy

Numerov’s method is a fourth-order linear
multi step method. The three term recurrence
formula
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is called the Numerov method for efficient so-
lution of type (1) on a discrete mesh point
with variable step-size d of the form d =
Tp — Tp_1,m=0,1,---  N.
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Where
fici=fle—=d), fi=f(x), fiqr=Ff(z+d)
Yicr =@ —d), Yi=v(), Yi1=19Y(@—d)
Rearranging we have
Vit + 1/:;271 — i % (fix1%ig1 + fic1thim1 + 10f50;)
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Recall that

fia= 2R (E-Vi), fi=-2(E-V)
fiv1 = —27% (B = Vig1)
We have
B hin =29 + Yipr
2m d?
" Vic1ipi—1 + 101/21‘1/%' + Vig1vin (©6)
- Yi—1+10¢; + i
12

Available online at www.sympnp.org/proceedings



It follows that
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Where
-2 1 0 0 0
1 -2 1 0 O
0O 1 -2 1 0
A= 0O 0 1 -2 1
0O 0 0 1 -2
10 1 0 0 O
1 10 1 0 O
B i 0 1 101 O
12 0 0 1 10 1
0 0 0 1 10
Vi 0 0 0 0 -
oV 0 0 0 -
V= 0o 0 Vs 0 0 -
o o 0 0 Vg 0 -
0o 0 0 0 V5 -
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Multiplying both sides by B!, we get
h2
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which is of the form
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Results and Conclusion

We have solved the Schroedinger equation
for the Woods-Saxon potential which is given
by
Vo

V(T) = - 1+ e(r;R)
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where Vj (having dimension of energy) repre-
sents the potential well depth. We have used
the following parameters : Vj = 50 MeV,
a =0.6 fm and R = 8 fm in our calculation.
After substituting the Woods-saxon potential
in Eq. 9, we get

n Vo
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We diagonalize the above matrix to ob-
tain the corresponding eigenvalues of the
Schroedinger equation for the Woods-Saxon
potential. We have developed a mathematica
code to calculate the eigenvalues and eigen-
functions of the Schroedinger equation numer-
ically for Woods-Saxon Potential using ma-
trix Numerov method. The table I lists the
corresponding eigenvalues obtained by this
method.

TABLE I: Numerical results for the quantized en-
ergies of the Woods-Saxon potential.
n|Eigenvalue(MeV)
-49.9871
-49.9484
-49.8843
-49.7951
-49.6812
-49.5429
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