High spin states in ³⁸K

Abhijit Bisoi^{1*}, S. Ray², M. Roy Basu³, D. Kanjilal², S. Nag⁴, K. Selva Kumar⁵, A. Goswami², N. Madhavan⁶, S. Muralithar⁶, R. K. Bhowmik⁶, S. Sarkar¹, and

M. Saha Sarkar²

¹Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India
²Saha Institute of Nuclear Physics, Bidhannagar, Kolkata - 700064, India
³University of Calcutta, Kolkata - 700009, India
⁴National Institute of Technology, Raipur Chhatisgarh - 492010, India
⁵Indian Institute of Technology, Kharagpur-721302, India
⁶Inter University Accelerator Centre, New Delhi - 110067, India

*Email: abijitbisoi@gmail.com

Introduction

Nuclei in the neighbourhood of doubly closed ⁴⁰Ca usually exhibit characteristics of spherical single particle excitations and their excitation spectra are well explained by spherical shell model [1]. However, several nuclei viz., ⁴⁰Ca [2], ³⁶Ar [3], ³⁵Cl [4] in this mass region have also revealed deformed states even superdeformation at relatively higher excitation energies and the observed Superdeformed (SD) bands in these nuclei were explained in terms of particle-hole excitations in the shell model. Therefore, this region gives us a unique opportunity to investigate experimentally the interplay between single particle and collective degrees of freedom and interpret them microscopically through large basis shell model (LBSM) calculation involving the cross-shell correlation [4,5].

³⁸K is an odd-odd (N=Z=19) nucleus in this mass region. This nucleus was studied by C. J. Van Der Poel et. al. [6] through heavy ion reaction. They have extended the level scheme upto 11 MeV and assigned the spin and parity of these levels from DCO measurements or shell model results. However, most of these assigned spins and parities were not confirmed. In the present work, we have investigated ³⁸K to extend the level scheme and remove some of these uncertainties. The large basis shell model (LBSM) calculation has also been carried out to know the microscopic origin of these states. **Experiment**

High-spin states in 38 K have been populated through 12 C+ 28 Si (110 MeV) reaction in the inverse kinematics. The relevant details of the experiment have been discussed in Ref. [7]. Gamma - gamma coincidence measurement has been done using the multi-detector array of thirteen Compton suppressed Clover detectors (INGA setup) at Inter University Accelerator Centre (IUAC), New Delhi.

Fig.2: Partial level scheme of ³⁸K. Newly assigned γ transitions are indicated by *.

Available online at www.sympnp.org/proceedings

Results and Discussion

The data have been analyzed by using the improved version of the analyzing program INGASORT. Fig.1 shows a typical background subtracted coincidence spectra of ³⁸K. Since, we have a 31.9 ± 1.0 µs isomer [6] at 3.46 MeV, the level scheme of ³⁸K was studied by putting gates on both above and below the isomer. From our analysis, 4 new gammas and 2 new excited levels have been placed above the 3.46 MeV isomer (Fig.2). These new gammas were observed from 1296 and 1796 keV gated spectra. The linear and polarization measurement angular correlation measurements have been done to assign their spin and parity. Based on our analysis, we have modified the existing level scheme [6] by changing the spin of 5.25, 7.40, and 8.69 MeV levels. For the new levels, we have assigned their spins from our DCO measurement. However, due to the low statistics of the decay out gamma transitions from these levels, the liner polarization measurement was not done. Hence, the parity of these levels were not assigned. Apart from these new levels, we have also observed 2.4 MeV level in our heavy ion experiment which was previously observed from light ion experiments [1].

		-
_	12407	

1 <u>1+ <i>10366</i></u>		1210980	8 <u>- 10</u> 585
10+ 8878	11+ 8748	1 <u>1- 8</u> 693	
8 <u>+ 7311</u>	1 <u>0 79</u> /4	1 <u>0 79</u> 14 9 <u>7 73</u> 97	
8 <u>+ 54</u> 33	8 <u>61</u> 97 8 <u>+ 52</u> 54	<u>8_619</u> 7	
7 <u>+ 35</u> 72	7 <u>+ 34</u> 58	6- 3420	6 <u>38</u> 05
2+ 2324	2 <u>+ 24</u> 01	$\frac{4^{-}}{3^{-}}$ 2646 3^{-} 2613	$\frac{4^{-}}{3^{-}}\frac{2413}{2300}$
$\frac{1+635}{0+310} \\ \frac{3+0}{7} \\ \overline{100} $	$\frac{\frac{1+}{0^{+}}\frac{458}{I30}}{3^{+}\frac{1}{Exp}}\theta$	Exp	Theo

Fig.3: Comparison of theoretical and experimental level schemes for positive and negative parity states in 38 K. All these energies were plotted considering the ground-state energy (-251.345 MeV) as 0.

The mixing ratios of a few transitions in ³⁸K have also been measured.

We have performed LBSM calculation using OXBASH code [8] to understand the microscopic origin of these states. The valence space consists of $1d_{5/2}$, $1d_{3/2}$, $2s_{1/2}$, $1f_{7/2}$, $1f_{5/2}$, $2p_{3/2}$ and $2p_{1/2}$ orbitals for both protons and neutrons above the ¹⁶O inert core. The number of valence particles (protons + neutrons) in 38 K is 22. The "sdpfmw" interaction used is taken from WBMB sd-pf shell Hamiltonian [9]. During the calculation, different truncation methods were used to reproduce the experimental level scheme. For the positive parity states, 0p-0h $(0^+ \rightarrow 6^+)$ and 2p-2h (7⁺ \rightarrow 12⁺) excitations were considered. The negative parity states were generated by exciting 1 particle to the pf shell. In these calculations, there was no particle restriction on $1d_{5/2}$ orbital and we have not changed the single particle energies (SPE) of pf orbitals. The mass normalization factors for each truncation were considered accordingly. The comparison between the experimental and theoretical level scheme obtained from LBSM calculation is shown in Fig.3. It shows that for high spin negative parity states (>6⁻), the calculated energies are over-predicted by several MeV, indicating the need for inclusion of three particle excitation (3p-3h) to pf orbitals. Hence, calculation with 3p-3h will be performed for high spin negative parity states. LBSM calculations have also been performed for transition probabilities, magnetic moments etc.

Acknowledgments

The authors acknowledge the help from other INGA collaborators and the Pelletron staff of IUAC for their sincere help and cooperation.

References

[1] www.nndc.bnl.gov
[2] E. Ideguchi et al., Phys. Rev. Lett. 87, 222501 (2001).
[3] C. E. Svensson et al., Phys. Rev. Lett. 85, 2693 (2000); C. E. Svensson et al., Phys. Rev. C 63, 061301(R) (2001).
[4] Abhijit Bisoi et al., Phys. Rev. C 88, 034303 (2013).
[5] E. Caurier, F. Nowacki, and A. Poves, Phys. Rev. Lett. 95, 042502 (2005); E. Caurier, J. Men_endez, F. Nowacki, and A. Poves, Phys. Rev. C 75, 054317 (2007).
[6] C. J. van der Poel et al., Nucl. Phys. A 394, 501 (1983).
[7] S. Muralithar et al., Nucl. Instr. and Meth. A 622, 281 (2010); Sudatta Ray et al., Proc. DAE-BRNS International Symp. Nucl. Phys. (India), 54 (2009) 56.
[8] B.A. Brown, A. Etchegoyen, W.D.M. Rae, N.S. Godwin,

[8] B.A. Brown, A. Etchegoven, W.D.M. Rae, N.S. Godwin,
MSU-NSCL Report No. 524, 1985, unpublished.
[9] E.K. Warburton et. al., Phys. Rev.C 41, 1147 (1990).