Shape Coexistence in N = 28 Isotones

G. Saxena1,*, M. Kaushik2, M. Kumawat3, and S. K. Jain3
1Department of Physics, Govt. Women Engg. College, Ajmer - 305002, INDIA
2Department of Physics, Shankara Institute of Technology, Kukas, Jaipur-302028, INDIA and
3Department of Physics, School of Basic Sciences, Manipal University Jaipur-303007, INDIA

Shape coexistence is one of the important nuclear phenomenon which appears throughout the periodic chart from light mass nuclei to superheavy nuclei. The evolution of ground-state shapes in an isotopic or isotonic chain is governed by changes of the shell structure of single-nucleon orbitals. In recent past, evolution of shell structure guiding shape coexistence, has been observed in the N = 20 and N = 28 isotones around proton drip line [1–4]. A number of experimental investigations have been carried out using the model Lagrangian approach [6, 7]. Our RMF calculations have been carried out using the model Lagrangian density with nonlinear terms both for the σ and ω mesons as described in detail in Ref. [7].

\[
\mathcal{L} = \bar{\psi}[i\gamma^\mu \partial_\mu - M] \psi + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m^2 \sigma^2 - \frac{1}{4} g_\sigma \sigma^4 - g_\sigma \bar{\psi} \sigma \psi - \frac{1}{4} H_{\mu\nu} H^{\mu\nu}
\]

\[
+ \frac{1}{2} \left(\epsilon_2 \omega^2 \omega^\mu + \frac{1}{4} C_3 (\omega^i \omega^j)^2 - g_\omega \bar{\psi} \gamma^\mu \sigma \omega_\mu \right)
\]

\[
- \frac{1}{4} C_\sigma G_{\alpha\beta} \sigma^{\alpha\beta} + \frac{1}{2} m^2 \rho^2 \rho^{\alpha\beta} - g_\rho \bar{\psi} \gamma_\mu \tau^a \sigma \rho^{a\mu}
\]

\[
- \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - v \epsilon \gamma^\mu \gamma^\nu \left(1 - \gamma_5 \right) \frac{1}{2} \lambda^\mu \sigma
\]

where the field tensors \(H, G \) and \(F \) for the

\[\quad
\]

*Electronic address: gauravphy@gmail.com

FIG. 1: The potential energy surface of N = 28 isotones (\(^{40}\text{Mg}, \) \(^{42}\text{Si}, \) \(^{44}\text{S})\) as a function of the deformation parameter \(\beta_{2m} \).

As established, we have found spherical configuration of doubly-magic \(^{48}\text{Ca}\) with one sharp minima at \(\beta_{2m} = 0 \). The binding energy maps exhibits variety of rapidly evolving shapes after successive removals of proton pairs from \(^{48}\text{Ca}\). This variation of binding energy is shown in Fig. 1 with respect to quadrupole deformation parameter \(\beta_{2m} \) for N = 28 isotones. By removing a pair of protons from \(^{48}\text{Ca}\), the energy surface of the corresponding isotope \(^{46}\text{Ar}\) becomes soft with a shallow extended minimum along the oblate axis (not shown here). After another removal of proton pair we predicts a coexistence of pro-

Available online at www.sympnp.org/proceedings
TABLE I: Results of excitation energy as obtained in the deformed RMF calculations using TMA force parameters. These energies are compared with other theoretical and experimental results [1, 8–10].

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Excitation Energy (MeV)</th>
<th>RMF(TMA)</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>44S</td>
<td>0.77</td>
<td>1.36 [8]</td>
<td>0.2 [1]</td>
</tr>
<tr>
<td>42Si</td>
<td>2.6</td>
<td>2.5 MeV [9]</td>
<td>1.5 [1]</td>
</tr>
<tr>
<td>40Mg</td>
<td>3.5</td>
<td>1.38 [10]</td>
<td></td>
</tr>
</tbody>
</table>

late and oblate minima at $\beta_{2m} = 0.38$ and -0.26 respectively for the nucleus 44S as can be observed from upper panel of Fig. 1. These two minima are separated only by an excitation energy of 0.77 MeV and, therefore, one expects to find pronounced mixing of prolate and oblate configurations in the low-energy collective states of this nucleus. Next, for 42Si the binding energy displays a deep oblate minimum at $\beta_{2m} = -0.37$ whereas second prolate minimum is found at $\beta_{2m} = 0.49$ with an excitation energy of 2.6 MeV as can be seen from middle panel of Fig. 1. These results are similar to the results as obtained from RHB theory by Lalazissis et al. [1] and energy Density Functional analysis of shape evolution in N = 28 isotones [4]. Moving further, with another proton pair removed, the very neutron-rich nucleus 40Mg shows a deep prolate minimum at $\beta_{2m} = 0.46$ and an oblate minimum at $\beta_{2m} = -0.37$ with excitation energy of 3.5 MeV (lower panel of Fig. 1.).

Moreover, we have shown calculated results of excitation energy in Table I, which are also compared with some other theoretical and experimental data [1, 8–10]. It is gratifying to note that our results are in good agreement with other data which bear witness for shape coexistence in N = 28 isotope towards proton drip line.

This phenomenon of shape coexistence leads to disappearance of N = 28 neutron shell closure. To demonstrate it we have shown in Table II, energy difference between neutron 1f$_{5/2}$ and 1f$_{7/2}$ states which gives rise to N = 28 shell closure. It is evident from the Table II that the gap decreases significantly towards proton deficient side as compared to the gap in 48Ca and one can conclude with this that N = 28 shell closure disappears in the vicinity of proton drip line and phenomenon of shape coexistence develops.

Authors would like to thank Prof. H. L. Yadav, BHU, India and Dr. L. S. Geng, RCNP, Osaka, Japan for their continuous support. One of the authors (G. Saxena) gratefully acknowledges the support provided by SERB(DST), India under the young scientist project YSS/2015/000952.

TABLE II: Results of energy difference between neutron 1f$_{5/2}$ and 1f$_{7/2}$ states responsible for N = 28 shell closure.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Energy between 1f${5/2}$ and 1f${7/2}$ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48Ca</td>
<td>7.49</td>
</tr>
<tr>
<td>46Ar</td>
<td>7.43</td>
</tr>
<tr>
<td>44S</td>
<td>6.79</td>
</tr>
<tr>
<td>42Si</td>
<td>5.12</td>
</tr>
<tr>
<td>40Mg</td>
<td>2.62</td>
</tr>
</tbody>
</table>

References