Signature partner pairs of superdeformed rotational bands in 192Tl

H. M. Mittal* and Anshul Dadwal

Department of Physics,
Dr. B.R. Ambedkar National Institute of Technology,
Jalandhar 144011, INDIA

Introduction

Rotational bands associated with superdeformed (SD) shapes in $A \sim 190$ mass region are identified by the dynamic moment of inertia ($\mathfrak{I}^{(2)}$), which rises smoothly with the rotational frequency ($\hbar \omega$). This property of SD bands are only observed in the $A \sim 190$ mass region. In lower mass region of $A \sim 130, 150$, pronounced variation of $\mathfrak{I}^{(2)}$ with $\hbar \omega$ is seen. This distinguishing feature of $\mathfrak{I}^{(2)}$ is the result of gradual alignment of $i_{13/2}$ protons and $j_{15/2}$ neutrons. Another characteristic feature of the $A \sim 190$ mass region is that these bands are observed at lower ($\sim 10 \hbar$) spins and has smaller transition energies when compared with $A \sim 80, 150$ mass region ($> 20 \hbar$). This provide the unique opportunity to study the second potential well. Prediction of 192Hg as the “doubly magic” SD nucleus based on the large gaps in Woods-Saxon single-particle diagram at large deformation supported the fact that multiple SD bands have been found in the neighbouring Hg isotopes [1–4]. Further it was noticed that the various SD bands observed are identical to this “doubly magic” 192Hg SD nucleus. These similarities in the transition energies are explained in terms of pseudo-spin symmetry of SD nuclei [5]. Out of many interesting properties of SD bands observed in $A \sim 190$ mass region, another astonishing property is the observation [6, 7] of “flat bands” in 192Tl, where $\mathfrak{I}^{(2)}$ is observed to be constant with the $\hbar \omega$ in the two bands.

Presently, many theoretical models like Harris ω^2 expansion [8], ab expression [9], variable moment of inertia model [10] etc. are available which provide the reliable spins of SD bands. In the present approach, we have calculated band head MoI of SD bands available in 192Tl in $A \sim 190$ mass region using soft rotor formula (SRF).

Formalism

A nuclear softness (NS) formula was proposed by Gupta [11]. Later Brentano et al. [12] given the similar expression for well-deformed nuclei and nuclei in transitional region. Brentano et al. called this as “soft-rotor formula” (SRF).

The energy formula for a rigid rotator is given by

$$ E = \frac{\hbar^2}{2I} (I + 1). \quad (1) $$

This formula predicts state largely higher than obtained from experiments. The variation of MoI with the angular momentum was incorporated and modified Eq. (1) as,

$$ E = \frac{\hbar^2}{23I} (I + 1). \quad (2) $$

After Taylor series expansion of \mathfrak{I}_I about its ground state value \mathfrak{I}_0 for $I = 0$ and representing in terms of “Softness” parameter (σ), we get,

$$ E_I = \frac{\hbar^2 I(I + 1)}{23\mathfrak{I}_0} \times \left(1 - \frac{\sigma_1 I^2}{1 + \sigma_1 I + \sigma_2 I^2} \right) \times \left(1 - \frac{\sigma_2 I^2}{1 + \sigma_1 I + \sigma_2 I^2} \right) \cdots \quad (3) $$

where, $\sigma_1, \sigma_2, \sigma_3, \ldots$ are the constants of first, second, third etc., orders of “nuclear softness”.

*Electronic address: mittal.hm@lycos.com

Available online at www.sympnp.org/proceedings
Keeping the nuclear softness to only first order i.e putting $\sigma_2, \sigma_3, \ldots = 0$, we get a two parameter formula. Eq. (3) can be written as $(\sigma = \sigma)$,

$$E = \frac{\hbar^2}{2\Im_0} \times \frac{I(I+1)}{1+\sigma I}.$$ \hspace{1cm} (4)

where, \Im_0 and σ are the fitting parameters. Since, intraband energies and intensities are the only spectroscopic properties whose information are available for superdeformed bands hence one may choose to fit E_γ transitions as.

$$E_\gamma = E(I) - E(I-2).$$ \hspace{1cm} (5)

Using Eq. (4) and Eq. (5) the transition energies for superdeformed bands is expressed as

$$E_\gamma(I) = \frac{\hbar^2}{2\Im_0} \times \left[\frac{I(I+1)}{1+\sigma I} \right] - \frac{(I-2)(I-1)}{1+\sigma(I-2)}.$$ \hspace{1cm} (6)

The parameters \Im_0 and σ are obtained by least-squares fitting.

<table>
<thead>
<tr>
<th>SD band</th>
<th>$E_\gamma(I_0 + 2 \to I_0)$ (keV)</th>
<th>\Im_0 (\hbar^2 MeV$^{-1}$)</th>
<th>σ ($\times 10^{-4}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>192Tl(1)</td>
<td>283.0</td>
<td>102.73</td>
<td>0.4514</td>
</tr>
<tr>
<td>192Tl(2)</td>
<td>337.5</td>
<td>102.88</td>
<td>3.3932</td>
</tr>
<tr>
<td>192Tl(3)</td>
<td>233.4</td>
<td>94.45</td>
<td>20.521</td>
</tr>
<tr>
<td>192Tl(4)</td>
<td>213.4</td>
<td>94.45</td>
<td>20.598</td>
</tr>
</tbody>
</table>

Results and Discussion

Observed transition energies of 192Tl[1, 2, 3, 4], indexed in the table of SD bands [13] and continuously updated ENSDF database [14] have been fitted to SRF model. The values of parameters \Im_0 and σ is obtained by fitting of E_γ transition energies in Eq. 6. The calculated band head MoI with SRF formula are almost identical for 192Tl(1), 192Tl(2) and 192Tl(3), 192Tl(4) (See Table I).

Conclusion

At low transition energies, the intraband γ-transitions of one band is close to midpoint energies of adjacent transition of other band suggest that these bands are two pair of signature partner. Identical $(\delta \Im_0/\Im_0 \approx 10^{-3})$ band head MoI obtained using SRF formula for 192Tl(1), 192Tl(2) and 192Tl(3), 192Tl(4) verified the experimentally observed signature partners.

Acknowledgments

Financial support from Department of Science and Technology (Govt. of India) is gratefully acknowledged.

References