Signature partner pairs of superdeformed rotational bands in ^{192}Tl

H. M. Mittal^{*} and Anshul Dadwal Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, INDIA

Introduction

Rotational bands associated with superdeformed (SD) shapes in $A \sim 190$ mass region are identified by the dynamic moment of inertia $(\mathfrak{T}^{(2)})$, which rises smoothly with the rotational frequency $(\hbar \omega)$. This property of SD bands are only observed in the $A \sim 190$ mass region. In lower mass region of $A \sim 130, 150$, pronounced variation of $\mathfrak{T}^{(2)}$ with $\hbar\omega$ is seen. This distinguishing feature of $\mathfrak{T}^{(2)}$ is the result of gradual alignment of $i_{13/2}$ protons and $j_{15/2}$ neutrons. Another characteristic feature of the $A \sim 190$ mass region is that these bands are observed at lower ($\sim 10\hbar$) spins and has smaller transition energies when compared with $A \sim 80,150$ mass region (> $20\hbar$). This provide the unique opportunity to study the second potential well. Prediction of ^{192}Hg as the "doubly magic" SD nucleus based on the large gaps in Woods-Saxon single-particle diagram at large deformation supported the fact that multiple SD bands have been found in the neighbouring Hg isotopes [1-4]. Further it was noticed that the various SD bands observed are identical to this "doubly magic" ^{192}Hg SD nucleus. These similarities in the transition energies are explained in terms of pseudo-spin symmetry of SD nuclei [5]. Out of many interesting properties of SD bands observed in $A \sim 190$ mass region, another astonishing property is the observation [6, 7] of "flat bands" in ^{192}Tl , where $\Im^{(2)}$ is observed to be constant with the $\hbar\omega$ in the two bands.

Presently, many theoretical models like Harris ω^2 expansion [8], *ab* expression [9], vari-

able moment of inertia model [10] etc. are available which provide the reliable spins of SD bands. In the present approach, we have calculated band head MoI of SD bands available in ^{192}Tl in $A \sim 190$ mass region using soft rotor formula (SRF).

Formalism

A nuclear softness (NS) formula was proposed by Gupta [11]. Later Brentano *et al.* [12] given the similar expression for well-deformed nuclei and nuclei in transitional region. Brentano *et al.* called this as "soft-rotor formula" (SRF).

The energy formula for a rigid rotator is given by

$$E = \frac{\hbar^2}{2\Im} I(I+1). \tag{1}$$

This formula predicts state largely higher than obtained from experiments. The variation of MoI with the angular momentum was incorporated and modified Eq. (1) as,

$$E = \frac{\hbar^2}{2\Im_I}I(I+1).$$
 (2)

After Taylor series expansion of \Im_I about its ground state value \Im_0 for I = 0 and representing in terms of "Softness" parameter (σ), we get,

$$E_{I} = \frac{\hbar^{2}I(I+1)}{2\Im_{0}} \frac{1}{(1+\sigma_{1}I)} \times \left(1 - \frac{\sigma_{2}I^{2}}{(1+\sigma_{1}I+\sigma_{2}I^{2})} \dots\right). \quad (3)$$

where, σ_1 , σ_2 , σ_3 ... are the constants of first, second, third etc., orders of "nuclear softness".

Available online at www.sympnp.org/proceedings

^{*}Electronic address: mittal.hm@lycos.com

Keeping the nuclear softness to only first order i.e putting $\sigma_2, \sigma_3.... = 0$, we get a two parameter formula. Eq. (3) can be written as $(\sigma_1 = \sigma)$,

$$E = \frac{\hbar^2}{2\Im_0} \times \frac{I(I+1)}{1+\sigma I}.$$
 (4)

where, \Im_0 and σ are the fitting parameters. Since, intraband energies and intensities are the only spectroscopic properties whose information are available for superdeformed bands hence one may choose to fit E_{γ} transitions as.

$$E_{\gamma} = E(I) - E(I-2).$$
 (5)

Using Eq. (4) and Eq. (5) the transition energies for superdeformed bands is expressed as

$$E_{\gamma}(I) = \frac{\hbar^2}{2\Im_0} \times \left[\frac{I(I+1)}{1+\sigma I} - \frac{(I-2)(I-1)}{1+\sigma(I-2)} \right].$$
(6)

The parameters \Im_0 and σ are obtained by least-squares fitting.

TABLE I: Parameters \Im_0 and σ obtained using least-squares fitting.

SD	E_{γ}	\Im_0	σ
band	$(I_0 + 2 \to I_0)$		$(\times 10^{-4})$
	(keV)	$(\hbar^2 M e V^{-1})$	
$^{192}Tl(1)$	283.0	102.73	0.4514
$^{192}Tl(2)$	337.5	102.88	3.3932
$^{192}Tl(3)$	233.4	94.45	20.521
$^{192}Tl(4)$	213.4	94.45	20.598

Results and Discussion

Observed transition energies of $^{192}Tl[1, 2, 3, 4]$, indexed in the table of SD bands [13] and continuously updated ENSDF database [14] have been fitted to SRF model. The values of parameters \Im_0 and σ is obtained by fitting of E_{γ} transition energies in Eq. 6. The calculated band head MoI with SRF formula are almost identical for $^{192}Tl(1)$, $^{192}Tl(2)$ and $^{192}Tl(3)$, $^{192}Tl(4)$ (See Table I).

Conclusion

At low transition energies, the intraband γ -transitions of one band is close to midpoint energies of adjacent transition of other band suggest that these bands are two pair of signature partner. Identical ($\delta \Im_0/\Im_0 \approx 10^{-3}$) band head MoI obtained using SRF formula for $^{192}Tl(1)$, $^{192}Tl(2)$ and $^{192}Tl(3)$, $^{192}Tl(4)$ verified the experimentally observed signature partners.

Acknowledgments

Financial support from Department of Science and Technology (Govt. of India) is gratefully acknowledged.

References

- M. P. Carpenter *et al.*, Phys. Lett. B 57, 44 (1990).
- [2] E. A. Henry *et al.*, Z. Phys. A **335**, 361 (1990).
- [3] M. A. Riley *et al.*, Nucl. Phys. A **512**, 178 (1990).
- [4] C. W. Beausang *et al.*, Z. Phys. A **335**, 325 (1990).
- [5] F. S. Stephens *et al.*, Phys. Lett. **65**, 301 (1990).
- [6] Y. Liang *et al.*, Phys. Rev. C 46, R2136 (1992).
- [7] S. M. Fisher *et al.*, Phys. Rev. C 53, 2126 (1996).
- [8] A. Dadwal, H. M. Mittal and N. Sharma, Int. J. Mod. Phys. E 25, 1650038 (2016).
- [9] C. S. Wu *et al.*, Phys. Rev. C 45, 261 (1992).
- [10] A. Dadwal and H. M. Mittal, Chinese Phys. C (Accepted).
- [11] R. K. Gupta, Phys. Lett. B 36, 173 (1971).
- [12] P. V. Brenteno *et al.*, Phys. Rev. C 69, 044314 (2004).
- [13] B. Singh, R. Zywina and R. B. Firestone, Table of Superdeformed Nuclear bands and Fission Isomers, Nucl. Data Sheets 97, 241 (2002).
- [14] http://www.nndc.bnl.gov/