Evaporation residue cross-section measurements for compound nuclei around $Z_{CN}=82$ region

Priya Sharma¹,* B.R. Behera¹, N. Madhavan², I. Mazumdar³, Ruchi Mahajan¹,

Meenu Thakur¹, Gurpreet Kaur¹, Kushal Kapoor¹, Kavita Rani¹, J. Gehlot², S. Nath², M. Dhibar⁴, S.M. Patel³, M.M. Hosamani⁵, Khushboo⁶, R. Dubey², A. Shamlath⁷, N. Kumar⁶, G. Mohanto⁸, and Santanu Pal⁹

Department of Physics, Panjab University, Chandigarh - 160014, INDIA

²Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi - 110067, INDIA

³ Tata Institute of Fundamental Research, Mumbai - 400005, INDIA

⁴Department of Physics, Indian Institute of Technology, Roorkee - 247667, INDIA

⁵ Department of Physics, Karnatak University, Dharwad - 580003, INDIA

⁶Department of Physics and Astrophysics, University of Delhi - 110007, INDIA

⁷Department of Physics, Central University of Kerala, Kasaragod - 671314, INDIA

⁸Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, INDIA and

⁹CS-6/1 Golf Green, Kolkata-700095, INDIA (Formerly with VECC, Kolkata)

Introduction

For understanding the reaction mechanism involving heavy compound nuclei (CN), we have performed measurements of the evaporation residue (ER) cross-section for the $(i)^{48}\text{Ti}+^{150}\text{Nd}\rightarrow^{198}\text{Pb}$, $(ii)^{48}\text{Ti}+^{142}\text{Ti}+^{160}\text{Nd}\rightarrow^{198}\text{Pb}$ 142 Nd \rightarrow 190 Pb and (iii) 48 Ti+ 144 Sm \rightarrow 192 Po systems leading to CN around $Z_{CN}=82$ region. It is conjectured that proton shell closure $Z_{CN}=82$ may lead to enhanced ER production [1] and may help in the synthesis of heavy nuclei. Here, we investigate the effect of proton shell closure $Z_{CN}=82$ and deformation through the ER cross-section measurements.

The experiment was carried out in the gasfilled mode of HYbrid Recoil mass Analyzer (HYRA) [2] using 15 UD Pelletron+LINAC accelerator facility at IUAC, New Delhi. More details of the experimental set up is available in Ref. [3].

Experimental analysis

For the determination of ER cross-section, extraction of transmission efficiency plays a key role. For the efficiency measurement, ⁴⁸Ti+¹²²Sn was used as a calibration reaction. Using the already existing experimental ER cross-section [4] and the Monte Carlo simulation code TERS [5], experimentally extracted average transmission efficiency value for ${}^{48}\text{Ti} + {}^{122}\text{Sn}$ reaction is $28.71 \pm 5.6\%$. The efficiency value of the calibration reaction was further normalized for other systems to obtain the ER cross-section for 48 Ti+ 142,150 Nd. ¹⁴⁴Sm systems which are shown in Fig. 1.

FIG. 1: ER cross-section for ${}^{48}\text{Ti}+{}^{142,150}\text{Nd}$. ¹⁴⁴Sm systems as a function of E_{cm}/V_b .

Here, ER cross-section for deformed ¹⁵⁰Nd target ($\beta_2=0.27$) is higher in comparison to the spherical ¹⁴²Nd ($\beta_2=0.09$) and ¹⁴⁴Sm $(\beta_2=0.087)$ targets.

Available online at www.sympnp.org/proceedings

^{*}Electronic address: priya.apr250gmail.com

FIG. 2: Experimental ER cross-section (filled circle) versus energy in lab frame (E_{lab}) along with theoretical results obtained using statistical model calculations after varying K_f for a) ${}^{48}\text{Ti}+{}^{150}\text{Nd}$ b) ${}^{48}\text{Ti}+{}^{142}\text{Nd}$ and c) ${}^{48}\text{Ti}+{}^{144}\text{Sm}$ systems including shell-correction in the level density and fission barrier.

Theoretical calculations

Statistical model (SM) calculations are performed using Bohr-Wheeler (BW) formalism [6] for fission width (Γ_f) including shell correction in the level density and fission barrier. A scaling factor (K_f) for the FRLDM barrier is introduced and treated as an adjustable parameter to fit the experimental ER cross-sections. Coupled channel calculations were performed to obtain CN spin distributions from the CCFULL code [7] and used as an input in the SM code. SM calculations were subsequently performed and K_f was adjusted to reproduce the ER cross-sections in the measured energy range. The final theoretical cross-section values are compared with the experimental ones after varying K_f values are shown in Fig. 2. It is observed that a single value of K_f cannot fit the ER crosssections over the entire range. For 142,150 Nd targets, $K_f = 0.80$ and for ¹⁴⁴Sm $K_f > 1$ gives fit to the ER cross-section. The smaller values of scaling factor corresponds to the higher contribution of non compound nuclear (NCN)

processes. The results shows that quasi-fission (QF) is either absent or very small for ¹⁴⁴Sm target and it supports the earlier measurements mentioned in Ref. [8]. In case of Nd targets, smaller K_f signifies the contribution from QF.

References

- D. Ackermann *et al.*, Eur. Phys. J. A **20**, 151 (2004).
- [2] N. Madhavan *et al.*, Pramana J. Phys. 75, 317 (2010).
- [3] Priya Sharma *et al.*, Proc. of the Int. Symp. on Nucl. Phys. **60**, 910 (2015).
- [4] S. Gil *et al.*, Phys. Rev. C 51, 1336–1344(1995).
- [5] S. Nath, Comput. Phys. Commun. 180, 2392 (2009).
- [6] N. Bohr and J.A. Wheeler, Phys. Rev. 56, 426 (1936).
- [7] K. Hagino, N. Rowley, and A.T. Kruppa, Comput. Phys. Commun. **123**, 143 (1999).
- [8] G. N. Knyazheva *et al.*, Phys. Rev. C 75, 064602 (2007).