Negative-parity high-spin band structure in ¹³⁵Pr

Ritika Garg¹,* S. Kumar², Mansi Saxena², Savi Goyal², Davinder Siwal³, Sunil Kalkal⁴, S. Verma², R. Singh⁵, S. C. Pancholi¹, R.

Palit⁶, Deepika Choudhury⁷, S. S. Ghugre⁸, G. Mukherjee⁹, R. Kumar¹,

R. P. Singh¹, S. Muralithar¹, R. K. Bhowmik¹, and S. Mandal²

¹Inter University Accelerator Centre, Aruna Asif Ali Marg, New Delhi - 110067, INDIA

²Department of Physics and Astrophysics,

University of Delhi, Delhi - 110007, INDIA

³Department of Physics, Panjab University, Chandigarh - 160014, INDIA ⁴School of Physics and Material Sciences,

Thapar University, Patiala - 147001, INDIA

⁵AINST, Amity University, Noida, INDIA

⁶Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, INDIA

⁷ELI-NP, Hora Hulubei National Institute of Physics

and Nuclear Engineering, 077125 Magurele, ROMANIA

⁸ UGC -DAE Consortium for Scientific Research, Kolkata - 700098, INDIA and

⁹Physics Group, Variable Energy Cyclotron Centre, Kolkata - 700064, INDIA

The phenomenon of magnetic rotation (MR) [1] was discovered when rotation-like bands of strongly enhanced magnetic dipole (M1) γ -ray transitions were observed in spherical or near-spherical nuclei. The dominant feature of these bands is that high-i, low- Ω proton particles (holes) and high-i, high- Ω neutrons holes (particles) or vice versa couple to form two long spin vectors j_{π} and j_{ν} , adding up to a total spin J of the nucleus. Such a coupling gives rise to enhanced M1 transitions. This phenomenon was first observed in A = 190 mass region across the isotopic chain of Pb nuclei. It was found that the MR bands in these nuclei are associated with highj proton excitations coupled to high-j neutron hole states i.e. $[\pi(h_{9/2}i_{13/2}s_{1/2}^{-2})11^{-} \otimes \nu i_{13/2}^{-n}],$ n = 1, 2, 3 and different configurations of the neutrons in the pf orbitals. This discovery of rotational-like sequences of γ -ray transitions led to the search of MR bands in other mass regions near closed shells where high-i nucleons are available.

In $A \sim 135$ mass region, MR bands are ex-

pected as high-j low- $\Omega h_{11/2}$ proton and high- $\Omega~h_{11/2}$ neutron orbitals lie near the Fermi surface and nuclei have small core deformation. Several $\Delta I = 1$ bands built on multiquasiparticle configurations have been found across some nuclei in this mass region [2, 3]. These bands involved $h_{11/2}$ protons and neutrons. Further investigation of these bands and the observation of new $\Delta I = 1$ bands revealed that they could be interpreted as arising due to the phenomenon of MR. In the present work, a dipole band structure in ¹³⁵Pr has been investigated for the phenomenon of MR.

The experiment to populate high spin states in ¹³⁵Pr was performed at Inter University Accelerator Centre (IUAC), New Delhi, with a 82 MeV ¹⁶O beam from the pelletron accelerator being incident on a target consisting of 800 $\mu g/cm^2$ ¹²³Sb with 10 mg/cm² ¹⁹⁷Au backing. The γ rays emitted in the reaction were detected using the Indian National Gamma Array (INGA), which consisted of 15 Comptonsuppressed clover detectors. Data were taken in triple and higher fold γ -ray coincidence. The data were sorted and analyzed using IN-GASORT and RADWARE programs, respectively.

15

^{*}Electronic address: ritikagarg250gmail.com

A partial level scheme [4] has been established for negative parity states. In the negative parity level structure, several new γ -ray transitions have been identified and placed. Among higher spin states, a dipole band has been reported. It consists of M1 transitions $(M1(\Delta I = 1))$ nature established by Directional Correlations of Oriented states (DCO) and Integrated Polarizational Directional Correlation (IPDCO) methods.). The crossover E2 transitions in this band have been observed for the first time. A band crossing has been seen at $I \approx 35/2^ \hbar$ and $\hbar \omega \approx 0.37$ MeV. The experimentally observed properties have been interpreted in terms of the Tilted Axis Cranking (TAC) model [5]. For the TAC calculations, a 3qp configuration and a 5qp configuration have been considered for the lower and upper parts of the band, respectively. A good agreement between the I versus $\hbar\omega$ experimental data and theoretical calculations supports

the proposed configuration assignments to this band.

Acknowledgments

The authors gratefully acknowledge the support provided by the Pelletron staff at IUAC, New Delhi during the experiment. Financial support from UGC-DAE-Kolkata and CSIR is acknowledged.

References

- [1] S. Frauendorf, Z. Phys. A **358**, 163 (1997).
- [2] N. Xu, et al., Phys. Rev. C 39, 1799 (1989).
- [3] N. Xu, et al., Phys. Rev. C 36, 1649 (1987).
- [4] R. Garg, et al., Phys. Rev. C. 92, 054325 (2015).
- [5] V. I. Dimitrov, et al., Phys. Rev. C 62, 024315 (2000).