No core shell model results for oxygen chain

Archana Saxena∗ and Praveen C. Srivastava†
Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247 667, India

Introduction
No core shell model (NCSM) is a successful ab initio approach for explaining the properties like charge radii and electromagnetic moments of lighter nuclei accurately [1]. An ab initio calculation has been done for oxygen chain with coupled cluster effective interaction (CCEI) method in Ref. [2], which was focused only on the binding energies and ab initio no core full configuration (NCFC) approach has been used for 14F nucleus for finding g.s. energy [3]. The NCSM is useful to understand the nuclear structure and reaction physics precisely. Now, the calculations are also possible with the continuum effects in NCSM for explaining unbound states, scattering and nuclear reactions. Recently, the NCSM calculations with continuum (NC-SMC) effects have been done in the case of 11Be in which the parity inversion problem is also solved with N2LOsat interaction only [4] because the spectrum is highly sensitive with respect to NN + NNN nuclear interactions. The essence of ab initio calculations is to minimize the model dependency of calculated results. In the present work, our focus is on oxygen isotopes. We show the energy spectra of 18O and evolution of occupancies of proton and neutron orbitals in the oxygen chain. We have used inside non local outside Yukawa potential (INOY) [6] for NCSM calculations.

The electromagnetic moments of sd shell nuclei with ab initio shell model calculations using effective interactions: in-medium similarity renormalization group (IM-SRG) and CCEI have been recently reported in Ref. [5].

No Core shell model formalism
In NCSM, we start with the completely intrinsic Hamiltonian

\[H_A = T_{\text{rel}} + V = \frac{1}{A} \sum_{i<j} \left(\frac{\vec{p}_i - \vec{p}_j}{2m} \right)^2 + \sum_{i<j} V_{NN,ij}, \]

(1)

where m is the nucleon mass, \(V_{NN,ij} \) is the NN interaction having nuclear and coulomb part both. We add the center-of-mass (c.m.) Hamiltonian \(H_{\Omega}^{c.m.} = T_{c.m} + U_{\Omega}^{c.m} \) to starting Eq. 1, where \(U_{\Omega}^{c.m} = \frac{1}{2} Am_\Omega \vec{R}_i^2 \), \(\vec{R}_i = \sum_{j<i} \vec{r}_j/A \).

\[H_A^\Omega = H_A + H_{\Omega}^{c.m.} = \sum_{i=1}^{A} h_i + \sum_{i<j} V_{ij}^{\Omega,A} \]

\[= \sum_{i=1}^{A} \left[\frac{\vec{p}_i^2}{2m} + \frac{1}{2} m_\Omega^2 \vec{r}_i^2 \right] + \sum_{i<j} \left[V_{NN,ij} - \frac{1}{2} m_\Omega^2 (\vec{r}_i - \vec{r}_j)^2 \right]. \]

(2)

We subtract again c.m. HO Hamiltonian in the final many-body calculation so there is no net effect on intrinsic properties of the many-body Hamiltonian. We have used INOY NN interaction for the calculations. This interaction have nonlocality in certain partial waves for describing the B.E. of 3H and 4He nuclei correctly and it is also useful in getting faster convergence at lower basis space size in compared to other interactions. The final Hamiltonian have dependency of frequency \(\Omega \) and model space size.

Results and Discussions
In this work, we present the NCSM calculations for oxygen chain 18,20,22,24O using the
phenomenological INOY NN interaction. In the present calculations, we have taken the harmonic oscillator frequency $h\Omega=18$ MeV for 18O, 20O, 22O and $h\Omega=14$ MeV for 24O. In Fig. 1, we show the energy spectra for 18O with increasing basis space size up to energy ~ 6 MeV. We can see from this figure as basis space size increases the energy of the calculated 2^+_1 state approaches to the experimental data. We expect that as model space size will increase we will get better results. So, we will see the results at $N_{\text{max}}=6$. The order of states up to energy ~ 4 MeV is similar with the experiment. The states 2^+_1 and 4^+_1 are at much lower energy with respect to the experiment but the 3^+_1 and 2^+_2 states are near to the experiment.

In the present calculations, we have used 45 orbitals for both the protons and neutrons corresponding to $N_{\text{max}}=6$ basis space size and 29 orbitals corresponding to $N_{\text{max}}=4$ basis space size. Fig. 2 shows the occupancies for the ground state and first excited state in oxygen chain. We have shown the occupation numbers up to fp shell. Above the fp shell the occupation numbers are very small and very hard to visualize (in the present figure). So, we have not shown the orbitals beyond fp shell. The NCSM calculations give $Q_{2^+_1}$ value -0.3895 eb and $BE(2^+_1 \rightarrow 0^+_1)$ value 0.1868 $e^2 fm^4$ for 18O. For 18O, we have shown the calculations for basis space size $N_{\text{max}}=6$ while for the other oxygen isotopes at $N_{\text{max}}=4$ due to computational limitations. It is possible to get correct electromagnetic properties at higher N_{max}. The calculations for $N_{\text{max}} > 6$ are still under progress.

We would like to thank P. Navrátil and C. Forssén for useful discussions during this work. AS acknowledges financial support from MHRD (Govt. of India) for her Ph.D. thesis work. All calculations have been done at Prayag-cluster at IIT-Roorkee.

References