Theoretical study of band structure of ¹¹⁵In nucleus

Amit Kumar^{1, 2}, * Dhanvir Singh², Suram Singh³, and Arun Bharti²

¹Deptartment of Physics, GCW Gandhi Nagar,Jammu -180003, INDIA ²Department of Physics, University of Jammu,Jammu-180006, INDIA ³Deptartment of Physics, Govt. degree college, Kathua -184142, INDIA * email: akbcw2@gmail.com

Introduction

The A~100 nuclei are equipped with rich information about the kind of deformation occurring in these nuclei. Nuclei near A~100 mass region are situated in a transitional region in between spherical and deformed nuclei and are characterized by a good amount of quadrupole deformation. The nuclides with 40≤ $Z \le 50$ and $N \ge 50$ are of great interest because of the several shape transitions occurring in near A~100 mass region. Different types of deformations (e.g. prolate, oblate, triaxial) can coexist in the same nucleus in accordance with the due to interplay between orbitals. Thus, the nuclei near A~100 mass region are good candidates to study the influence of orbitals on the deformation. In the present work, the axial PSM has been systematically applied to the ¹¹⁵In nucleus to study the effect of interplay between $1g_{9/2}\ proton$ and $1h_{11/2}\ neutron\ orbitals$ on the structure of ¹¹⁵In nucleus.

Outline of the Framework

In this work we have used the following Hamiltonian [1]

$$\hat{H} = \hat{H}_o - \frac{\chi}{2} \sum_{\mu} \hat{Q}^{\dagger}_{\mu} \hat{Q}_{\mu} - G_M \hat{P}^{\dagger} \hat{P} - G_Q \sum_{\mu} \hat{P}^{\dagger}_{\mu} \hat{P}_{\mu}$$

Where, H_o is spherical single particle Hamiltonian. The second term is the quadrupolequadrupole interaction and the last two terms are the monopole and quadrupole pairing interactions, respectively. The monopole pairing strength G_M is given by

$$G_{\scriptscriptstyle M} = (G_{\scriptscriptstyle 1} \mp G_{\scriptscriptstyle 2} \, \frac{N-Z}{A}) \frac{1}{A} (MeV)$$

with "+" for protons and "-" for neutrons. Values of G_1 and G_2 are taken as 22.50 and 12.12, respectively. The quadrupole pairing strength G_Q is assumed to be proportional to G_M and the proportionality constant is fixed to be 0.16. In the present calculations, we use ε_2 = 0.20 for ¹¹⁵In. The configuration space used in calculations consists of the three major shells for

each kind of nucleon: N=2, 3 and 4, for protons and N=3, 4 and 5 for neutrons.

Results and Discussions

Some nuclear structure properties such as band structure, yrast spectra and back-bending for ¹¹⁵In nucleus has been calculated and compared with the available experimental data [2]. The calculated data for various nuclear structure properties are found to be in good agreement with the corresponding experimental data.

From the results of the calculations, it is found that:

- PSM calculations have successfully reproduced the experimental yrast states.
- Bands structure for ¹¹⁵In isotopes has been obtained from the PSM calculations and is shown in the form of band diagram. This diagram predicts multi quasi-particle structure for ¹¹⁵In nucleus.
- Back-bending in Moment of inertia and rotational alignment for ¹¹⁵In are also studied in this work.

The detail presentation of results for ¹¹⁵In would be made during the conference.

Fig. 1 Band diagram for ¹¹⁵In.

Available online at www.sympnp.org/proceedings

References

- K. Hara and Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995).
- [2] R. Lucas et al., Eur. Phys.J. A **15**, 315 (2002).

Fig. 3 Comparison of experimental and PSM results for twice the kinetic moment of inertia $[2\Im^{(1)}(\hbar^2 \text{MeV}^{-1})]$ plotted as a function of angular frequency squared $(\hbar^2 \omega^2)$ for ¹¹⁵In.

Fig. 4 Plot of rotational frequency ($\hbar \omega$) versus spin depicting rotational alignment in ¹¹⁵In.