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Introduction

Nuclear shapes are very sensitive to the
structural effects and can change with spin,
isospin and temperature. In some cases con-
figurations corresponding to different shapes
may coexist at similar energies which may
arise from intruder excitations [1] leading to
shape coexistenxe which is a topic of recent
research interest. The nuclear masses around
A≈ 80-110 offer an interesting region to ex-
plore ground state shape changes and shape
coexistence in the vicinity of Z around 40
and then transition towards less deformed to
spherical while approaching shell closure at Z
= 50. Most of the atomic nuclei are known to
have spherical or prolate ground state shapes
except in few regions on the nuclear chart
where oblate and triaxial shapes [2] are pre-
dominant. We evaluate shapes in the Z=40
region in a theoretical framework and search
for shape coexistence.

Brief description of work

Calculations are performed within the
framework of (i) Nilson Strutinsky (NS)
method [3] using triaxially deformed Nils-
son potential including shell corrections where
the classical collective properties of the liquid
drop model are combined with the quantum
corrections due to shell effects (ii) relativis-
tic mean-field plus state dependent BCS ap-
proach (RMF+BCS). Results of both the the-
ories are compared with the available experi-
mental data. In NS method, Strutinsky for-
malism is used by incorporating higher order
corrections with Hermite polynomials. The

∗
Electronic address: mamta.a4@gmail.com

energy minima are traced using NS method
(for Nilsson deformation parameters β and γ

where various γ are competing for E minima)
and RMF+BCS appraoch (using NLSH and
TMA parameters).

Results and Discussion

Fig. 1 shows (a) β vs N (b) γ vs. N for
Zr isotopes. In Fig. (a), both the theories
agree well with the experimental values [5].
Zr presents an entire range of a highly de-
formed oblate near proton drip line to tri-
axial while moving towards spherical around
Z=50 to highly deformed prolate in A=100
region. Triaxiallity (Fig. 1(b)) dominates in
this region with some oblate (-180o) and few
prolate shapes(-120o). There are slight de-
viations in NS and RMF predicted β values
at some places which could be due to inclu-
sion of triaxiality in NS calculations, whereas
in RMF+BCS calculations, only prolate and
oblate shapes have been included. Dominance
of triaxial shapes in this region justifies the
slight deviation in values.
Fig. 2 shows energy minima as a function of

β using (a) RMF+BCS and (b) NS aproach for
various γ ranging from oblate to prolate with
triaxial shapes. RMF+BCS predicts oblate
shape with 0.2 deformation in 84Zr. The pro-
late minima is seen well above the oblate min-
ima by around 1 MeV. In Fig. 2(b), we note
various γ are competing for E minima with
two γ -180o (oblate) and -155o (triaxial) coex-
isting with the deepest minima at almost the
same energy. The triaxial shape (-155o) dif-
fers from the oblate shape by merely 173 KeV.
The prolate shape (γ=-120o) is well above the
other γs and lies around 1 MeV above the
oblate shape in agreemnet with RMF+BCS.
Hence both the theories predict Oblate min-
ima with prolate lying at around 1 MeV above
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FIG. 1: (a) β vs. N (b) γ vs. N for Zr isotopes.
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FIG. 2: E vs. β with (a) RMF+BCS (b) NS
method for 84Zr

oblate shape. Inclusion of triaxiallity adds one
additional degree of freedom which paves its
way to the intersting phenomena of shape co-
existence. In Fig. 1(b), 100Zr shows oblate
minima (β=0.32) which is actually coexisting

with prolate shape with merely 31 Kev en-
ergy difference in accord with the RMF+BCS
which also shows oblate minima (β=0.323).
However the prolate minima in RMF+BCS
lies at 1 MeV above the oblate minima.
Conclusion

Evaluation of shapes and the phenomena
of shape coexistence is studied by employ-
ing RMF+BCS and Nilsson Strutinsky ap-
proach. Triaxial shape is dominant in Z=40
(A ≈80-100) region with some oblate and few
prolate shapes consisting of highly deformed
(with β=0.4-0.5) as well as spherical nuclei.
84Zr shows coexisting oblate and triaxial min-
ima with prolate minima lying around 1 MeV
above the oblate minima. Predictions of both
the theories are in consensus except few differ-
ences due to inclusion of triaxiality in NS ap-
proach. Nilsson Strutinsky approach predicts
shape coexistence with oblate and prolate in
100Zr.
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