Systematic study of superdeformed bands in 152Tb

Honey Sharma* and H. M. Mittal
Department of Physics,
Dr. B. R. Ambedkar National Institute of Technology,
Jalandhar, Punjab, India

Introduction
The evidence for the existence of superdeformation was given experimentally by Twin et al. [1]. Afterwards, number of superdeformed (SD) bands are observed in different mass regions i.e. $A \sim 190, 150, 130, 80, 60$. The linking transitions between SD bands and the normal deformed bands (ND) remain unrevealed. Therefore, many of the aspects like spin assignments, parities and excitation energies remain unknown. Many different methods are suggested to calculate the spin assignments [2–5]. The existence of identical bands in $A \sim 150$ mass region i. e. (151Tb(2) and 152Dy(1)) proves to be one of the incredible discoveries. The energies are almost same for the 16 transitions (within 2 keV) [6].

The response of dynamic moment of inertia ($J^{(2)}$) versus the rotational frequency proves to very useful in understanding the general properties of SD bands. In $A \sim 150$ mass region, ($J^{(2)}$) decreases with the increase of rotational frequency [7]. Sharma et al. [8] studied the systematics of $J^{(1)}$ and $J^{(2)}$ of SD bands with N_pN_n scheme In this present paper we have studied the E_γ transition energies of 152Tb$I_1, 2$ SD bands. To do this work we have employed the two parameter formulae i. e. VMI model, nuclear softness formula and the power index formula.

Formalism

VMI Model
Mariscotti et al. [9] suggested a model in which angular momentum of energy levels are given by the sum of potential energy term and the rotational energy term. The transition energies of SD bands can be expressed as

$$E_\gamma(I \rightarrow I - 2) = \frac{I(I + 1 - (I - 2)(I - 1))}{2\mathcal{Z}_0} + \frac{[I(I + 1)]^2 - [(I - 2)(I - 1)]^2}{8C\mathcal{Z}_0^4},$$

(1)

where \mathcal{Z}_0 and C are the model parameter and can be found by the fitting techniques.

Nuclear softness formula
Nuclear softness formula was designed by Gupta [10]. In this work, energy levels of ground state bands in even-even nuclei have been taken into the account. Similar expression was given for transitional and well deformed nuclei called as soft rotor formula. The transition energies for the SD bands can be expressed as

$$E_\gamma = \frac{\hbar^2}{2\mathcal{Z}_0} \times \left[\frac{I(I + 1)}{1 + \sigma I} - \frac{(I - 2)(I - 1)}{1 + \sigma(I - 2)} \right].$$

(2)

where \mathcal{Z}_0 and σ are the model parameter, which can be found by the fitting procedures.

Power index formula
The single term expression for the ground band level energies of soft rotor was proposed by Gupta et al. [11] In this work the arithmetic mean approach of Bohr-Mottelson formula was replaced by the geometric mean and was called as the Power index formula.

$$E_\gamma(I) = a(I^b - (I - 2)^b),$$

(3)

where a and b are obtained by the least square fitting of the observed transition energies.

*Electronic address: honeyshrma777@gmail.com
Results and Discussion

VMI model, nuclear softness formula and power index formula have been applied on 152Tb(1,2) SD bands to calculate the E_γ transition energies. The data has been taken from the tables of SD bands given by Singh et al. [12]. The calculated results of transition energies obtained for 152Tb(1,2) SD bands have been compared with the experimental results (see Table I and II).

TABLE I: Comparison of the theoretical result (VMI model, Nuclear softness formula (N.S) and Power index formula (P.I)) and experimental results of transition energies E_γ of 152Tb(1) SD band in (keV).

<table>
<thead>
<tr>
<th>Spin</th>
<th>Expt</th>
<th>VMI</th>
<th>N.S</th>
<th>P.I</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>824</td>
<td>819.4</td>
<td>820.2</td>
<td>820.6</td>
</tr>
<tr>
<td>33</td>
<td>864</td>
<td>865.9</td>
<td>865.8</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>909</td>
<td>911.4</td>
<td>910.8</td>
<td>910.4</td>
</tr>
<tr>
<td>37</td>
<td>954</td>
<td>955.3</td>
<td>954.8</td>
<td>954.6</td>
</tr>
<tr>
<td>39</td>
<td>1000</td>
<td>997.6</td>
<td>998.0</td>
<td>998.4</td>
</tr>
</tbody>
</table>

TABLE II: Comparison of the theoretical result (VMI model, Nuclear softness formula (N.S) and Power index formula (P.I)) and experimental results of transition energies E_γ of 152Tb(2) SD band in (keV).

<table>
<thead>
<tr>
<th>Spin</th>
<th>Expt</th>
<th>VMI</th>
<th>N.S</th>
<th>P.I</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>801</td>
<td>799.0</td>
<td>799.5</td>
<td>799.8</td>
</tr>
<tr>
<td>34</td>
<td>844</td>
<td>844.7</td>
<td>844.6</td>
<td>844.5</td>
</tr>
<tr>
<td>36</td>
<td>888</td>
<td>889.5</td>
<td>889.1</td>
<td>888.9</td>
</tr>
<tr>
<td>38</td>
<td>932</td>
<td>933.4</td>
<td>933.1</td>
<td>932.9</td>
</tr>
<tr>
<td>40</td>
<td>978</td>
<td>976.2</td>
<td>976.4</td>
<td>976.7</td>
</tr>
</tbody>
</table>

Conclusion

In this present work we have compared the values of transition energies of 152Tb(1,2) SD bands by using the VMI model, nuclear softness formula and the power index formula with the experimental data. A good agreement is shown by the power index formula for 152Tb(1,2) SD bands.

References