Dynamical Cluster-decay Model (DCM) applied to ⁴⁸Ca induced reactions on lanthanide targets

Pooja Kaushal*, Sahila Chopra, Hemdeep and Raj K. Gupta Department of Physics, Panjab University, Chandigarh - 160014, INDIA *email: poojaphysics7@gmail.com

Introduction

The experimental data on evaporation residue (ER) cross sections is available for ⁴⁸Ca beam with ¹⁵⁴Gd,¹⁵⁹Tb,¹⁶²Dy and ¹⁶⁴Ho targets at various E_{lab} = 185-209.4 MeV [1], in which heavy elements in the vicinity of closed shells at Z=82 and N=126 are produced that decay predominantly by xn, x=3-5, neutron emission. These reactions are expected to contain non-compound nucleus (nCN) decay effects [2] since the targets are strongly deformed. In ⁴⁸Ca+¹⁵⁴Gd reaction, ²⁰²Po* compound nucleus is formed that decays to both the ground and metastable states by emission of 4n and 3n,5n, respectively.

We have made our calculations for ⁴⁸Ca+¹⁵⁴Gd reaction at E_{CN}*=53.61 MeV using the Dynamical Cluster-decay Model (DCM) [3], based on the Quantum Mechanical Fragmentation Theory (QMFT), which includes the deformation and orientation effects of the outgoing co-planar or non-coplanar decay fragments. We have fitted the measured ER decay channels 3n, 4n and 5n where 3n and 5n ERs are from the metastable states of ^{199m}Po and ^{197m}Po, respectively, and 4n ERs are from the ground state of ¹⁹⁸Po at E_{CN} *=53.61 MeV formed in ⁴⁸Ca+¹⁵⁴Gd reaction, for a best fit of the necklength parameter ΔR , the only parameter of the DCM. The calculations are made for quadrupole deformations (β_{2i}) with optimum orientations θ_i^{opt} of the two nuclei lying in the same plane (co-planar nuclei, $\Phi=0^{0}$).

Methodology

DCM is based on QMFT in which the decay of excited compound nucleus is worked out in terms of the coordinates namely: Relative separation coordinate R, Mass [and charge] asymmetry coordinate $\eta = (A_1-A_2)/(A_1+A_2)$ [and $\eta_Z = (Z_1-Z_2)/(Z_1+Z_2)$], deformation $\beta_{\lambda i}$ ($\lambda = 2,3,4: i=1,2$), orientations θ_i , and azimuthal angle Φ

between the two nuclei. Then, in terms of these collective coordinates, using the partial wave analysis, CN decay cross-section is defined as

$$\sigma = \frac{\pi}{k^2} \sum_{\ell=0}^{\ell_{\max}} (2\ell + 1) P_0 P; \qquad k = \sqrt{\frac{2\mu E_{c.m.}}{\hbar^2}}$$
(1)

where the preformation probability P_0 refers to η - and the penetrability P to R-motion. The same formula is applicable to the nCN decay process where $P_0=1$. The Performation Probability, P_0 is given by the solution of stationary Schrödinger equation in η , at a fixed $R=R_a$, the first turning point(s) of the penetration path(s) for each ℓ values

$$\left\{-\frac{\hbar^2}{2\sqrt{B_{\eta\eta}}}\frac{\partial}{\partial\eta}\frac{1}{\sqrt{B_{\eta\eta}}}\frac{\partial}{\partial\eta}+V(\eta)\right\}\psi^{\nu}(\eta)=E_{\eta}^{\nu}\psi^{\nu}(\eta)$$
⁽²⁾

with v=0,1,2,3..., referring to ground-state (v=0) and excited-states solutions. Then, the g.s. preformation probability is

$$\mathbf{P}_{0}(\mathbf{A}_{i}) = \left| \Psi_{R}(\boldsymbol{\eta}(\mathbf{A}_{i})) \right|^{2} \sqrt{B_{\eta\eta}} \frac{2}{A}$$
(3)

Penetrability, P, is given as the WKB integral

$$P = \exp\left[-\frac{2}{\hbar}\int_{R_a}^{R_b} \left\{2\mu \left[V(R,T) - Q_{eff}\right]\right\} dR\right]$$
(4)

where $Q_{eff}=V(R_a)=V(R_b)=TKE(T)$ is the effective Q-value of the decay process, and R_a and R_b are the two turning points of WKB integral. For the decay occurring to metastable state of a nucleus, the Q-value gets modified to a Q-value given by the Q-value for the ground-state to ground-state decay minus the excitation energy ϵ , i.e., the metastable energy difference w.r.t. the ground state. The modified Q-value in Eq. (4) is then $Q_{eff}^*=Q_{eff}$ - ϵ [4]. For η -motion, the potential V(η) used in Schrödinger equation is

Available online at www.sympnp.org/proceedings

the sum of liquid drop energy, shell corrections, Coulomb, nuclear proximity and angular momentum dependent potential, which for 3n and 5n are modified by energy ε when used for decay to metastable state.

FIG. 1: Fragmentation potentials V as a function of light fragment mass number A₂, for the decay of ²⁰²Po^{*} to metastable ^{199m}Po and ^{197m}Po nuclei, plotted at ℓ_{min} and ℓ_{max} values, for best fitted ΔR values given in Table I.

Calculations and Results

FIG. 1 shows the fragmentation potential $V(A_2)$ for the decay of ²⁰²Po^{*}, with 3n and 5n channels corrected for metastable 199mPo and ^{197m}Po, respectively. In other words, the fragmentation potential energies for 3n and 5n decays are modified to obtain the metastable ^{199m}Po and ^{197m}Po by state energies of subtracting the respective metastable state energies (ε_i) from their respective ground-state, i.e., for metastable state $V^{m}(xn)=V(xn)-\varepsilon_{i}$, where x=3,5. Using this and the corresponding scattering potentials V(R) with Qeff* for 3n and 5n decays, Table I shows the best fitted xnchannel cross sections for ⁴⁸Ca+¹⁵⁴Gd reaction at laboratory energy E_{lab} =201.5 MeV, equivalently, at temperature T=1.65 MeV. We observe that metastable 3n and 5n states are fitted exactly, with no nCN contribution required. In table II, our preliminary calculations for g.s. decay show that for the observed ground-state 4n channel a large nCN contribution is required, where the nCN is treated as the quasi-fission like process.

Table I: The DCM calculated 3n and 5n ERs, corresponding to metastable states ^{199m}Po and ^{197m}Po, compared with experimental data.

Channel	ΔR	$\sigma^{DCM}{}_{xn}(mb)$	$\sigma^{Exp}(mb)$
1n	1.5	3.19×10 ⁻³	-
2n	0.1	3.72×10 ⁻¹²	-
3n	-0.8	2.8×10 ⁻¹⁹	-
4n	2.4	0.838	2.9
5n	1.8	9.7×10 ⁻⁶	-

Table II: DCM calculated 4n ER corresponding to the ground state ¹⁹⁸Po, compared with experimental data.

Channel	ΔR	$\sigma^{DCM}{}_{xn}\!(mb)$	$\sigma^{Exp}(mb)$
1n	1.3	5.92×10 ⁻³	-
2n	0.8	1.3×10 ⁻⁷	-
3n	2.35	1.10	1.10
4n	-1.8	1.96×10 ⁻²³	-
5n	2.542	1.00	1.00

This result for ground-state decay calls for the inclusion of higher multipole deformations β_{3i} , β_{4i} and the corresponding compact orientations θ_{ci}

Summary and Conclusions

Concluding, the DCM-calculations match the experimental data for ER cross-sections for 3n and 5n metastable-decay channels, i.e., to ^{199m}Po and ^{197m}Po nuclei, and are thus best fitted with no nCN contribution required, shown here for the first time. On the other hand, the observed ground-state 4n channel seems to require a considerable nCN contribution as expected[2].

References

- D. A. Mayorov *et al.*, Phys. Rev. C **90**, 024602 (2014).
- [2] G. N. Knyazheva *et al.*, Phys. Rev. C 75, 064602 (2007).
- [3] R. K. Gupta, Lecture Notes in Physics 818, *Clusters in Nuclei*, Ed. C. Beck, 1 (2010) 223.
- [4] R. K. Gupta *et al.*, J. Phys. G: Nucl. Part. Phys.**19** (1993)2063.