Resonant breakup of ⁸Be in ¹¹²Sn(⁷Li, ⁸Be $\rightarrow \alpha + \alpha$) reaction

D. Chattopadhyay^{1,2},* S. Santra^{1,2}, A. Pal^{1,2}, A. Kundu^{1,2}, K. Ramachandran¹, R. Tripathi^{2,3}, B.J. Roy^{1,2}, Y. Sawant¹, T.N. Nag³, B. K. Nayak^{1,2}, A. Saxena ^{1,2}, and S. Kailas^{1,2}

¹Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, India

²Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India and

³RadioChemistry Division, Bhabha Atomic Research Centre, Mumbai - 400085, India

(Dated: August 30, 2017)

Introduction

Measurements involving weakly bound projectiles with $\alpha + x$ cluster structure show significantly larger cross-sections for the inclusive α particle production as compared to production of the complementary fragment 'x'. It has been observed that these projectiles not only breaks into its cluster constituents α and x directly but also exchange a few nucleons with the target before decaying into the two fragments, one of which is α . One of the dominant transfer induced breakup process in the reactions involving ^{6,7}Li and ⁹Be projectiles is the formation of ⁸Be by transfer reaction followed by its breakup into two α particles. In a recent measurement for ${}^{6}\text{Li}+{}^{112}\text{Sn}$ reaction the 1*d* pickup by ${}^{6}Li$ forming ${}^{8}Be$ followed by its breakup into $\alpha + \alpha$ via its 0^+ (g.s) and 2^+ resonance states have been observed[1]. The 2α cluster structure of ⁸Be at its ground state (0^+) as well as other two resonance states at $3.12 \text{ MeV} (2^+)$ and 11.35 MeV (4^+) is well reflected by the values of the spectroscopic factors for $<^{8}Be| \alpha + \alpha >$ overlaps: $S(g.s)=0.84, S(2^+)=0.83 \text{ and } S(4^+)=0.75[2].$ Since the third resonance state (4^+) , like other two states, has a good overlap between 2α particles in the cluster, the breakup of ⁸Be into 2α via this state is also possible at favorable excitation energies. However, there is no experimental evidence reported so far on the observation of ⁸Be breakup via the 4⁺ resonance state. This paper reports the results of experimental investigation on the existence of ⁸Be breakup via 4^+ resonance state and its cross section along with 0^+ and 2^+ resonance states.

The experiment

Exclusive measurements have been carried out for ⁷Li+¹¹²Sn reaction at beam energy 30 MeV, using the 14-UD Pelletron-LINAC facility in Mumbai. Self-supporting enriched $(\sim 99.5\%)$ ¹¹²Sn foil of thickness $\sim 540 \ \mu g/cm^2$ was used as target. Five telescopes (S_1-S_5) of double-sided Si strip detectors were placed on one of the two rotatable arms inside a 1.5 m diameter scattering chamber to detect the projectile like fragments with a total angular range of about $\sim 96^{\circ}$. Two Si-surface barrier detectors (of thicknesses $\sim 1000 \ \mu m$) kept at $\pm 20^{\circ}$ were used to monitor incident flux by measuring the Rutherford scattering. In addition there were five Telescopes (T_1-T_5) of single surface barrier detectors (with $\Delta E \sim 50$ μm , E~1000-2000 μm) placed on the second arm of the scattering chamber to measure the elastic scattering cross-sections.

Results

The distribution of relative energy E_{rel} [1] between two coincidence breakup α has been extracted event by event. From the raw data of relative energy distribution Y_i^{raw} , the three peaks are identified corresponding to 0^+ , 2^+ and 4^+ resonance states of ⁸Be, as dominant 2α breakup modes. To confirm the result using efficiency corrected yield Y_i^{eff} $(=Y_i^{raw}/\epsilon_i)$, a MONTE-CARLO simulation has been made to obtain relative energy dependent coincidence efficiency (ϵ_i) of the detector array. For each coincident event the values of $\theta(^{8}\text{Be})$, $\phi(^{8}\text{Be})$, Q-Value and E_{rel} were re-

^{*}Electronic address: dipayan@barc.gov.in

			-	
State	Expected	Expected	Observed	Observed
	peak	width	peak	width
	pos.	(MeV)	pos.	(MeV)
	(MeV)		(MeV)	
0+	0.092	0.0057	0.09	0.05
2^{+}	3.12	1.513	3.5	2.2
4+	11.35	3.5	11.3	3.5

TABLE I: Expected and observed peak position and width for different breakup states

constructed and corresponding efficiency has been obtained. The event by event analysis led to efficiency corrected E_{rel} distribution as shown in Fig.1. The comparison of the peak positions and widths of resonance states with theoretical values in Table I confirms the observation of ⁸Be breakup via its 4⁺ state for the first time along with 0⁺ and 2⁺ states.

From the efficiency corrected relative energy distribution at each $\theta({}^{8}\text{Be})$ bin, the coincidence yields for 0^{+} , 2^{+} and 4^{+} states has been obtained by summing over all $\phi({}^{8}\text{Be})$ coverage of detector array. Differential breakup crosssections for 0^{+} , 2^{+} and 4^{+} state is extracted

FIG. 1: Relative energy distribution

FIG. 2: Differential cross sections for sequential breakup of $^{7}\text{Li}\rightarrow^{8}\text{Be}\rightarrow\alpha+\alpha$ and elastic scattering measured at $E_{\text{beam}}=30~\text{MeV}$

from the given relation

$$\frac{d\sigma^{BU}}{d\Omega} = \frac{\sum_{i=1}^{N} \frac{Y_i^{raw} d\zeta_i}{\epsilon_i}}{N_p N_t d\Omega} = \frac{\sum_{i=1}^{N} Y_i^{eff} d\zeta_i}{N_p N_t d\Omega}$$
(1)

where, N_p is the total no. of incident projectiles and N_t is the no. of target nuclei/area and $d\Omega$ is the solid angle corresponding to the element $\Delta \theta({}^8\text{Be})$, $\Delta \phi({}^8\text{Be})$ and ϵ_i is the efficiency for relative energy ζ_i and $\zeta_i + d\zeta_i$. The differential breakup cross-sections for 0^+ , 2^+ and 4^+ states of ${}^8\text{Be}$ along with elastic scattering are shown in Fig.2(a), (b) and (c) and (d) respectively.

Detailed study of 1p transfer breakup into 2α via 3 resonant states of ⁸Be including the one at very high excitation (11.3 MeV) presented here provides a good foundation towards understanding the reaction mechanisms of total α production and sequential mode of projectile breakup.

References

- [1] D. Chattopadhyay *et al.*, Phys. Rev. C 94,061602(R)(2016).
- [2] V. M. Datar *et al.*, PRL 111,062502(2013).