Role of surface energy coefficients in cluster decay

N. S. Rajeswari1,∗ C. Nivetha1, and M. Balasubramaniam2
1Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women - University, Coimbatore - 641043, INDIA and 2Department of Physics, Bharathiar University, Coimbatore- 641046, INDIA

Introduction

Radioactive heavy nuclei reaches stable region by emitting clusters, apart from emitting α particle, which are heavier than α particle and lighter than the lightest fission fragment, a phenomenon named cluster radioactivity. Poenaru and Greiner [1] interpreted the equivalence between the fission model and preformed cluster model, by stating that the preformation probability in fission models can be considered as the penetrability of the pre-scission part of the barrier. Shi and Swiatecki [2] estimated the half-lives of cluster emission by using a interpolation formula for fused region and a combination of proximity and Coulomb potential for the post-contact region. Proximity potential plays a vital role in deciding the characteristics quantities of a decay. We have analysed the role of nuclear surface energy coefficients in Shi and Swiatecki model in estimating pre-formation probability and half-lives in cluster decay.

Shi and Swiatecki [2] used Coulomb plus proximity potential for the post-touching region and for the pre-touching part they have used power law as given below:

\[V(L) = \frac{Z_1 Z_2 e^2}{R} + V_P - Q, \quad L \geq L_c \] (1)

\[V(L) = a(L - L_0)^x, \quad L_0 \leq L \leq L_c \] (2)

where L indicates the extreme extension of the configuration with \(L_c \) corresponds to the contact of the fragments. \(a \) and \(x \) are calculated using smooth continuity relation between the potentials of pre and post touching regions. \(V_P \) is the nuclear proximity potential term given as

\[V_P = 4\pi R^2 b \Phi(\xi). \] (3)

\(\Phi(\xi) \) is the universal function of proximity potential and \(\bar{R} \) is the mean curvature radius of the reaction partners, characterising the gap. Nuclear surface energy coefficient is given by

\[\gamma = \gamma_0 \left[1 - k_s \left(\frac{N - Z}{A} \right)^2 \right] \text{MeV fm}^{-2}, \] (4)

Here \(\gamma_0 \) and \(k_s \) are parametrised by different authors [3]. Half-life is given by

\[T_{1/2} = \frac{\ln 2}{\nu P_0 P} \] (5)

Here \(\nu \) is assault frequency and \(P_0 \) indicates pre-formation probability which is the penetrability for the pre-touching region and \(P \) penetrability for the post-touching region; both the penetrabilities are calculated using WKB method.

Results and discussions

We have incorporated, the idea of Poenaru et al [1], i.e. considering the penetrability for the pre-touching region as pre-formation probability, in Shi and Swiatecki [2] model for different parametrization of nuclear surface energy coefficients. Shi and Swiatecki does not include preformation probability in his model. Experimentally identified 15 cluster emitters with 221 ≤ A ≤ 242 are considered for study with emitted clusters such as \(^{14}\text{C},^{20}\text{O},^{24}\text{Ne},^{28}\text{Mg} \) and \(^{32}\text{Si} \) [4]. Based on the advancements in theory and experiments, the
values of γ_0 and k_s of nuclear surface energy coefficients were parametrised. Here we have used two parameter sets $\gamma_0 = 1.01734$ MeV/fm2, $k_s = 1.79$ denoted as γ-MS66 and $\gamma_0 = 0.9517$ MeV/fm2, $k_s = 1.7828$ denoted as γ-MS67 [3]. These values enter the calculation of P_0 in the proximity potential through continuity equation. Shi and Swiatecki employed γ-MS67 in his work. Fig. 1 represents the P_0 values calculated using WKB integral for the use of potential given by Eq. (2) for the use of these two γ’s. From the structure of P_0, it is clear that, it decreases as the size of the cluster increases, indicating the size dependence of the P_0 in cluster decay. This structure resembles Fig. 3 of our previous work (Ref. [4]) which is the discrepancy between experimental and calculated half-life assuming P_0 as 1. However magnitude of P_0 differ due to the calculation in the penetrability factor for the post touching region in both the models. Preformation probability values due to use of γ-MS67 are found to be lower than that calculation due to γ-MS66. Half-life is calculated for these 15 parent nuclei for cluster decays using Eq. (5) with P_0 due to both γ’s. In Fig. 2 calculated half-lives and experimental half-lives are presented. Solid circle represents the experimental half-lives and open circle and open triangle represent the calculations due to γ-MS67 and γ-MS66 respectively. For the use of γ-MS67, experimental and calculated half-lives coincides for 14C decay from 222Ra, 24Ne decay from 232U. In the case of γ-MS66, better matching between experimental and calculated half-lives are noted, for the emission of 14C from 224Ra, 225Ac and 226Ra and 28Mg from 234U, 32Si from 238Pu.

References