Studies on the existence of 1p halo isotopes via cluster decay of nuclei in super heavy region

K. P. Anjali¹, K. Prathapan¹, R. K. Biju¹,²,* and K. P. Santhosh³

¹Department of Physics, Govt. Brennan College, Thalassery, - 670106, INDIA
²Department of Physics, Pazhasi Raja N S S College, Mattanur - 670702, INDIA
³School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur-670327, INDIA

* email: bijurkn@gmail.com

Introduction

A threshold effect arising from the weak binding of the valence nucleons is referred as nuclear halos [1]. The study of such nuclear halos is the most interesting fields of modern nuclear Physics. Among the two types of halo nuclei, proton halo and neutron halo, our area of interest is on the study of the structure and properties of proton halo nuclei. They were discovered recently and have attracted a lot of attention in the recent times. Proton halo states have been found in the light proton rich nuclei close to the proton drip line. They are difficult to study experimentally because of their feeble nature and the often small production cross sections. Only three or four cases are experimentally observed [2,3], which include 1p halo nuclei ⁸B, ¹¹N, and ¹⁷F; and 2p halo nuclei ¹⁷⁷Ne.

We selected some of the experimentally observed or theoretically predicted cases of proton halo nuclei, ⁸B, ¹¹F, ²⁷²⁸P and identified their one proton halo structure from the separation energy findings. Further, we have compared the decay probability of ⁸B nucleus when it is treated as a cluster and as a halo. The decay possibilities of all the selected proton halo nuclei from the various parent nuclei in the superheavy region also included in our study.

The model

1p and 2p Separation energy for any nuclei can be calculated as

\[S(p) = -\Delta M(A, Z) + \Delta M(A-1, Z-1) + \Delta M_H \]

\[S(2p) = -\Delta M(A, Z) + \Delta M(A-2, Z-2) + 2\Delta M_H \]

\[\Delta M(A, Z), \Delta M_H, \Delta M(A-1, Z-1), \Delta M(A-2, Z-2) \]

are the mass excess of the parent nuclei, proton, daughter nuclei produced in the one proton and 2 proton radioactivity respectively.

<table>
<thead>
<tr>
<th>Halo nuclei</th>
<th>S(1p)(keV)</th>
<th>S(2p)(keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⁸B</td>
<td>136.371</td>
<td>5743.220</td>
</tr>
<tr>
<td>¹¹F</td>
<td>600.269</td>
<td>12727.68</td>
</tr>
<tr>
<td>²⁷²⁸P</td>
<td>869.950</td>
<td>6383.970</td>
</tr>
<tr>
<td>²⁸²⁸P</td>
<td>2052.20</td>
<td>9515.500</td>
</tr>
</tbody>
</table>

Table 1. 1p and 2p separation energies of various proton halo nuclei.

Available online at www.sympnp.org/proceedings
1p and 2p separation energies of the selected nuclei are included in table 1. All the nuclei in this table are belonging to the 1p halo structure because of its low S(p) than S(2p).

The radius of the halo nuclei doesn’t follow the relation R=R_{\text{A}}^{1/3}. For example, in the case of 8B, the radius is 2.2fm when it is treated as a normal cluster and the 3B halo radius is 2.38fm[5]. Decay of all the selected 1p halo nuclei from the superheavy parents (Z=103-114) has studied from the calculation of the decay half- life using CPPM. Fig. 1 shows the comparison of computed half- lives for the emission of 8B from the superheavy isotopes by treating them halo nuclei as well as normal cluster. It is found from the plots that the half-life for halo nuclei emission is lesser than that for cluster emission. Hence halo nuclei emission is more probable. It is also obvious from the plot that there is a dip in half life at N=126 and 138. We would like to mention that a peak in the plot of half- life shows the shell closure of parent nuclei and the dip in the half- life shows the shell closure effect of daughter nuclei. Hence the dips in this plot indicate the neutron shell closure of the daughter nuclei at N=126 and 138.

Hence, we presume that these halo and daughter combinations are probable for the formation of corresponding superheavy parents. It is also found from the plots that there are dips in the half lives at N = 126, 132, 138 and 142. This indicates the neutron shell closures of the daughter nuclei at N = 126, 132, 138 and 142. In many of the research papers predicts that the sub magic neutron shell closure occurs at N=132,138 and 142.

Fig. 2 Plot of log_{10}T_{1/2} versus neutron number of the daughter nuclei from Z=103-114 for the decay of 8B, 17F.

Fig. 3 Plot of log_{10}T_{1/2} versus neutron number of the daughter nuclei from Z=103-114 for the decay of 77, 78P.

References