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Introduction

Neutron-rich nuclei like % 1°He, ''Li,
19=22C are drawing much attention of physi-
cists with the rapid development in radio-
active ion beam facilities (RIB). Production
and detection of highly neutron-rich nuclei like
31Ne and 3"Mg have been reported recently
[1] [2] [3]. In the present communication we
concentrate on the theoretical structrure of re-
cently produced *?Ne [4]. Here we will explore
the ground state as well as resonance states in
the framework of few-body model.

We assume a three-body model of ?Ne as
a structureless core 2°Ne surrounded by two
valence neutrons (n). We first solve for the
ground state of the three-body system using
standard GPT [5] nn potential and standard
SBB [6] core-n potential using hyperspherical
coordinates. Parameters of the core-n poten-
tial chosen subject to the criteria that 3!Ne
subsystem is just unbound. The ground state
wave function then used to construct a one pa-
rameter family of isospectral potential. The
parameter is adjusted to develop a deep well
followed by a positive barrier facilitating the
trapping of particles(s) within the deep-well
and sharp barrier at energy E ( > 0). Prob-
ability of trapping of the particle within the
well-barrier combination is computed for dif-
ferent positive energies which shows a peak
at resonance energy. After locating the reso-
nance energy we used WKB approximation to
calculate the width of resonance.

Method

In hyperspherical harmonics expansion for-
malism we label the relatively heavier nuclear
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core 3" Ne as particle ”i” and two valence nu-

cleons as particles ”j” and ”k” respectively to
define the Jacobi cordinates as:
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where a; is const.; m;,r; are the mass and
position of the *" particle and M = m; +
mj + my, R is the centre of mass (CM) of the
system. We then introduce the hyperradius
p = \/a? 4+ y?, an invariant under three di-
mensional rotations and permutations of par-
ticle indices together with the five angular
variables Q; — {¢;,04,, ¢s,,0y,, Py, } consti-
tute hyperspherical coordinates of the system.
It is to be noted that hyperangles €2; depend
on the choice of the particular partition 7. In
terms of hyperspherical variables (p, ;) the
three-body Schrédinger equation becomes
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where V(p, §);) is the total interaction poten-
tial and I@z(ﬂl) is the square of hyper angu-
lar momentum operator an analogue of or-
bital angular momentum operator in three-
dimension.

Tables and Figures

Results and Discussions

As it is difficult to achieve fully converged
solution for small-sized computer which re-
stricts the expansion basis to some small fi-
nite value as well as the computation becomes
time consuming, search of an effective alterna-
tive method becomes inevitable. Here we used
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TABLE I: Calculated 2n-separation
energy (S2,), contribution of [, = 0"
partial wave in the probability density
and energy respectively for different
K4z in the ground state of 32Ne.

Kmaz|Son (: —E)(MEV) Pa—o | Elz=o0 (M@V)
4 3.6040 0.9400 -3.3697
8 4.0662 0.9317 -3.7785
12 4.2460 0.9340 -3.9557
16 4.3673 0.9359 -4.0832
20 4.4338 0.9371 -4.1523
24 4.4660 0.9378 -4.1844
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a novel technique to study resonance states of
weakly bound nuclei by contructing one pa-
rameter family of supersymmetric isospectral
partner potential of the original potential us-
ing the ground state wavefunction. Results
are presented in Tables I, IT and III. It can be
seen from Table II that the depth of the po-
tential well increases and simultaneously the
height of barrier also increases as the param-
eter § approaches zero. It can also be noted
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TABLE II: Parameters of the isospectral
potential as the parameter § decreases
from +o0o (original potential v(p))

towards 0+.
0 Potential well |Potential Barrier
Vo (MeV)[ry, (fm) [V, (MeV) | 1y (fm)
1000000| -11.369 | 3.046 | 4.058 | 0.100
100 -11.451 | 3.042 4.060 0.099
1 -17.958 | 2.782 | 4.618 | 7.079
0.1 -43.433 | 2.278 | 11.502 | 3.890
0.01 -97.893 | 1.778 | 38.121 | 2.783
0.001 | -157.518 | 1.362 | 86.332 | 2.133
0.0001 | -276.083 | 0.982 | 144.129 | 1.700
0.00001 | -486.800 | 0.711 | 245.533 | 1.196

TABLE III: Comparison calculated
results with other works found in the
literature for 32>Ne.

State | Observables | Present work | Others work
1} E (MeV) -4.4660 -1.9700[7]

0f | Er (MeV) 0.45 —~

that the width of the well as well as that of
the barrier become narrower with decreasing
0 and the minimum of the well shifts towards
the origin producing a dramatic effect.
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