Alpha decay of Z = 130 element

R.R. Swain, * B.B. Sahu

Department of Physics, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar-751024, INDIA

* email: bbsnou@gmail.com

Introduction

The probability of a shallow formation around the nucleus $^{34}_{130}$126 stretched towards the larger N may contain relatively long half-lived nuclei of the 128, 130 as well as 127th elements necessarily close to the optimal ratio N/Z. Further, the increasing survival probabilities of SHE from $Z = 114$ to 118 seem to indicate enhanced shell effects and hence the half-lives. Though the theoretical model identifies island stability of super-heavy elements [1, 2], their half-life extent from minutes up-to years. Generally, the super-heavy nuclei are formed through hot and cold fusion reaction process experimentally. Some of them have been synthesized by cold fusion reaction with $Z = 107-112$ at GSI, Darmstadt, and RIKEN, Japan [3, 4] and the hot fusion reaction with $Z = 113$-118 at JINR, Dubna [5, 6]. To find the possible shell or sub-shell closure in the super-heavy region, the study of decay modes have importance to confirm about the shell stability. In this work, we analyze the favorable decay modes for clear representation of nuclei such as alpha decay by using different formulae like Viola-Seaborg, the analytical formula of Royer, Universal curve formula, Universal decay law and compared with the corresponding fission process. The spontaneous fission of super-heavy nuclei with $Z = 130$ within the mass region $310 \leq A \leq 330$ is studied.

Theoretical Formalism

The relativistic Lagrangian density for a nucleon- meson system is [7, 8, 9]

\[
L = \bar{\psi} (i\partial - M) \psi + \frac{1}{2} \partial_{\mu} \Sigma \partial^{\mu} \Sigma - U(\Sigma) - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \frac{1}{2} m_{\omega} \omega_{\mu} \omega^{\mu} - \frac{1}{4} R_{\mu \nu} R^{\mu \nu} - g_{\omega} \bar{\psi} \omega \psi - g_{\rho} \bar{\psi} \rho \psi - g_{\sigma} \bar{\psi} \sigma \psi - \frac{1}{2} \phi \phi A_{\mu} \partial^{\mu} A
\]

Here all the above term have their usual meaning. The Q-value can be calculated from the binding energies of parent nuclei, daughter nuclei and emitted cluster nuclei i.e.

\[
Q = M(A,Z) - M(A_{1},Z_{1}) - M(A_{2},Z_{2})
\]

Where $M(A,Z), M(A_{1},Z_{1}), M(A_{2},Z_{2})$ are the atomic masses of parent, daughter and emitted cluster respectively [10].

The expression for the α-decay half life from Viola-Seaborg is given by,

\[
\text{log}_{10} T_{\alpha} = \frac{aZ - b}{\sqrt{Q_{a}}} - (cZ + d) + h_{\log}
\]

\[
h_{\log} = 0 \text{ for } Z \text{ even and } N \text{ even}
\]

\[
h_{\log} = 1.066 \text{ for } Z \text{ even and } N \text{ odd}
\]

The analytical formula for the logarithmic alpha decay half-lives have been given by G. Royer,

\[
\text{log}_{10} T_{1/2}(s) = a_{1} + b_{1} A^{1/6} Z^{1/2} + c_{1} Z^{1/2} \sqrt{Q_{a}}
\]

Where $a_{1} = -25.68$, $b_{1} = 1.1423$ and $c_{1} = 1.5920$ are the experimental fitting parameters.

The half life calculations are also calculated by using universal formula for the cluster decay is given as,

\[
\text{log}_{10} T_{1/2}(s) = -\text{log}_{10} P - \text{log}_{10} S + [\text{log}_{10}(b2) - \text{log}_{10} b] + \text{log}_{10} T_{1/2}
\]

The universal decay law half-life can be written in the form as,

\[
\text{log}_{10} T_{1/2} = \frac{A}{Q_{a}} + b_{2} AZ_{a}(A_{2}^{1/6} + A_{1}^{1/6}) + c
\]

The spontaneous fission half-lives for both e-e nuclei and odd-A nuclei can be expressed as,

\[
\text{log}_{10} T_{1/2} = c_{1} + c_{2} \left(\frac{2e}{A} k + k\right) + c_{3} \left(\frac{2e}{A} k^{2} + c_{4} k\right) + c_{5} \left(\frac{2e}{A} k + k\right)^{2} + c_{6} \left(\frac{2e}{A} k + k\right)^{3} + c_{7} \left(\frac{2e}{A} k + k\right)^{4} + c_{8} \left(\frac{2e}{A} k + k\right)^{5} + c_{9} \left(\frac{2e}{A} k + k\right)^{6}
\]

Where $c_{1} = 31.196159$, $c_{2} = -5.086737$, $c_{3} =$
where \(h = 0 \) for even-even nuclei and \(h = 4.302383 \)
for odd-A nuclei.

Table 1: Alpha decay of \(Z = 130 \) isotopes

<table>
<thead>
<tr>
<th>A</th>
<th>N</th>
<th>Q-value(MeV)</th>
<th>VSS</th>
<th>Royster</th>
<th>Univ.</th>
<th>UDL</th>
<th>SF</th>
<th>Decay Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td>185</td>
<td>15.76</td>
<td>-7.598</td>
<td>-7.170</td>
<td>-7.694</td>
<td>-9.217</td>
<td>113.469</td>
<td>α</td>
</tr>
<tr>
<td>317</td>
<td>187</td>
<td>16.3</td>
<td>-8.805</td>
<td>-8.445</td>
<td>-8.841</td>
<td>-10.354</td>
<td>100.403</td>
<td>α</td>
</tr>
<tr>
<td>319</td>
<td>189</td>
<td>18.871</td>
<td>-12.434</td>
<td>-12.100</td>
<td>-12.034</td>
<td>-13.647</td>
<td>88.482</td>
<td>α</td>
</tr>
<tr>
<td>325</td>
<td>195</td>
<td>13.144</td>
<td>-2.966</td>
<td>-2.763</td>
<td>-3.585</td>
<td>-5.199</td>
<td>33.572</td>
<td>α</td>
</tr>
</tbody>
</table>

Conclusion

We have analytically evaluated the half-lives and presented absolute plausible decay modes of \(Z = 130 \) super-heavy nuclei in Table 1. Our deliberate decay energy \(Q_\alpha \) and half-life time \(T_\alpha \) are in good agreement with the FRDM calculations. The alpha-decay and SF half-life study of \(Z = 130 \) super-heavy nuclei maybe of great exercise for beforehand experimental analysis in the super-heavy region.

References

Available online at www.sympnp.org/proceedings