Neutron transfer reactions to constrain matrix element for neutrinoless double beta decay of 124Sn

A. Shrivastava1,2,*, K. Mahata1,2, I. Stefan3, M. Assie3, P. Adsley3, D. Beaumel3, V.M. Datar4, A. Georgiadou3, J. Guillot3, F. Hammache3, N. Keeley5, Y.H. Kim6, A. Meyer3, V. Nana4, V.V. Parkar1, and N. de Sereville3

1Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, India
2Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
3Institut de Physique Nucléaire d’Orsay, UMR8608, IN2P3-CNRS, Université Paris Sud, 91406 Orsay, France
4Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India
5National Centre for Nuclear Research, ul. Andrzeja Sotana 7, 05-400 Otwock, Poland and
6GANIL, CEA/DRF - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France

Introduction

Neutrinoless double beta decay (NDBD) is expected to give the first direct measure of the effective neutrino mass. The uncertainty in the latter will be dominated by that in the relevant nuclear matrix element (NME) [1]. Of the various observables that could be used to constrain the NME, the occupancy and vacancy of ground state wavefunctions of the parent and daughter nuclei involved in NDBD, are important ingredients [1, 2]. Single-nucleon transfer reaction cross-sections can be used for this purpose, making use of the Macfarlane and French sum rules [3]. The method consists of requiring a normalization such that, for a given orbit characterized by total angular momentum j, the sum of the measured occupancy and vacancy on the same target add up to the degeneracy of the orbit $2j+1$. Such measurements allowed for a description of the energy and vacancy of the valence orbitals of 76Ge and 78Se, where 76Ge is a candidate for $0\nu2\beta$-decay. The results indicated that the Fermi surface is much more diffuse than in theoretical calculations [4]. Similar measurements have been recently performed on 130Te and 130Xe [5]. Both 76Ge and 130Te are subject of research for $0\nu2\beta$-decay programs known as GERDA, Majorana (for 76Ge) and CUORE (for 130Te). The present work is aimed to study neutron pickup and stripping transfer cross-sections on one of the $0\nu2\beta$-decay candidate 124Sn and its daughter 124Te. This nucleus is the focus of neutrinoless double beta decay study, at the upcoming underground India based Neutrino Observatory (INO). This information will be useful for constraining calculations of the nuclear matrix element for the $0\nu2\beta$-decay of 124Sn.

Experimental Details

Measurements of transfer cross-sections for reactions (d,p) (p,d) (4He, 3He) (3He, 4He) on enriched 124Te and 124Sn were performed at Split Pole facility at IPN Orsay, France. Thickness of both the targets was around $200\mu g/cm^2$ that were deposited on $20\mu g/cm^2$ CVD Carbon backing. The beam energies were chosen to be a few MeV above the Coulomb barrier where angular distributions are distinctly forward peaked. The (d,p) reactions were carried out at 15 MeV. For (p,d) reaction the proton energy was selected to be 22 MeV, to ensure that the outgoing deuterons were approximately of the same energy as the incident energy of deuterons in the (d,p) reaction. This allows for a similar optical-model parameterization to be used in the DWBA for

*Electronic address: aradhana@barc.gov.in
both the channels, thus minimizing systematic uncertainty. With the same consideration the beam energies for the \((^4\text{He}, ^3\text{He})\) and \((^3\text{He}, ^4\text{He})\) reactions were selected to be 40 MeV and 30 MeV respectively. For the \((^4\text{He}, ^3\text{He})\) and \((^3\text{He}, ^4\text{He})\) reactions, the focus was on the \(\ell = 5\) and \(\ell = 4\). The spectrometer was kept at angles 7° and 16° for \((\text{d},\text{p})\) reaction, 7° and 13° for \((\text{p},\text{d})\) and \((^4\text{He}, ^3\text{He})\) reactions, and 7° and 20° for \((^3\text{He}, ^4\text{He})\) reaction. In order to get absolute cross-section estimation of the product target thickness and spectrometer solid angle is required. This was obtained by measuring elastic scattering in the Coulomb regime for each target using beam of 20-MeV alpha particles.

Analysis and Summary

Sn nuclei with proton closed shell \(Z=50\) and Te nuclei with only two protons beyond the closed shell \(Z = 50\) span the wide neutron number region \(N = 50-82\). The relevant active orbitals are \(0g_{7/2}, 1d, 2s_{1/2}\), and the unique parity \(0h_{11/2}\). These states can be populated through \(\ell = 4, 2, 0, \) and 5 transfer, respectively. The states populated via \((\text{d},\text{p})\) reaction for \(^{124}\text{Sn}\) target are shown in Fig. 1. The angular distributions of the states for neutron stripping reaction on \(^{124}\text{Sn}\) target are plotted in Fig. 2 along with the calculated values, obtained using the code FRESCO \([6]\) (run in DWBA mode). Standard parameters were used for the bound states and for optical model potential \([7]\). The occupancies of the valence orbitals deduced from \((\text{d},\text{p}), (\text{p},\text{d}), (^4\text{He}, ^3\text{He})\) and \((^3\text{He}, ^4\text{He})\) reactions on \(^{124}\text{Sn}, ^{124}\text{Te}\) targets, have been compared with shell model predictions \([8]\). The results reveal that the change in neutron vacancy between \(^{124}\text{Sn}\) and \(^{124}\text{Te}\) occurs mainly in \(h_{11/2}\) orbital.

References