Dynamical effects of Si-isotopes induced reactions at similar centre of mass energies \(E_{\text{c.m.}} \).

Rupinder Kaur\(^1,\)\(^*\), Varinderjit Singh\(^2\), Maninder Kaur\(^2\), BirBikram Singh\(^3\), and B.S. Sandhu\(^1\)

\(^1\)Department of Physics, Punjabi University, Patiala-147002, India.
\(^2\)Department of Physics, I.K.G. Punjab Technical University, Kapurthala-144603, India. and
\(^3\)Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, India.

Introduction

The study of the complex phenomena observed in sub-barrier energies through fusion of isotopic chain of reactions is topic of interest in nuclear physics. A number of authors have theoretically investigated the sub-barrier fusion phenomena using different models to explain fusion enhancement and fusion hindrance phenomenon [1]. Since dynamics of fusing nuclei play a key role in the fusion mechanism, it will be interesting to study the fusion enhancement/hindrance for low-mass nuclei using the dynamical cluster decay model (DCM) [2] to get a better insight of the fusion process.

With this motivation, fusion of \(^{28,30}\text{Si}^{+12}\text{C} \) populating \(^{40,42}\text{Ca}^* \) [3] with \(Z=20 \) shell closure and neutron number gradually moving above \(N = 20 \) neutron shell closure has been investigated within DCM at energies above and below Coulomb barrier. The cross-sections for \(^{30}\text{Si}^{+12}\text{C} \) are reproduced using neck length parameter \(\Delta R \) at the different energies. The empirically fitted values of \(\Delta R \) are used to predict the fusion cross-sections at similar centre of mass energies \(E_{\text{c.m.}} \) for \(^{28}\text{Si}^{+12}\text{C} \). The predicted fusion cross-section values are in good agreement with the experimental measurements. Also, the fusion cross-sections has been predicted for energies far below the barrier. The hindrance phenomenon observed at sub barrier energies \(^{30}\text{Si}^{+12}\text{C} \) has been addressed through barrier lowering parameter which is the in-built property of the model.

Methodology

The DCM [2] of Gupta and collaborators is worked out in terms of collective co-ordinates of mass (and charge) asymmetries. In terms of above said co-ordinates, for \(\ell \)-partial waves, the compound nucleus decay cross-section is given by

\[
\sigma = \frac{2}{k^2} \sum_{l=0}^{l_{\text{max}}} (2l + 1) P_0 \pi \left(\frac{2\mu E_{\text{c.m.}}}{\hbar^2} \right)
\]

(1)

Where, \(\mu = [A_1 - A_2/(A_1 + A_2)]m \), is the reduced mass, with \(m \) as the nucleon mass and \(l_{\text{max}} \) is the maximum angular momentum. Where \(P \) is the barrier penetration probability and \(P_0 \) is the preformation probability at a fixed \(R \) on the decay path. The \(P_0 \) are evaluated by solving stationary Schrödinger wave
Calculations and Discussions

The analysis of heavy ion induced fusion reactions across coulomb barrier has been performed within the DCM for 28,30Si+12C reactions populating compound nuclei (CN) 40,42Ca*, respectively. To understand the possible structure of the decaying CN 40,42Ca* formed in the 28,30Si+12C reaction, fragmentation potential has been calculated for various fragments/clusters formed inside the CN. The calculated fragmentation potentials have been plotted with respect to fragment mass in the decay of 40,42Ca* at similar $E_{c.m.}$, as shown in Fig. 1(a and b) which describes the fragmentation for the extreme values of angular momentum values. At $\ell = 0h$, the contribution of the LPs or ERs(evaporation residues) is more prominent than the intermediate mass fragments and symmetric fission fragments, which otherwise start appearing at higher ℓ values. The tunneling of these energetically favored fragments through the barrier is determined through the scattering potential and penetration probability of these fragments. The barrier modification (ΔV_B) values, which is difference between the top of the barrier V_B and actual potential V_R, used for penetration is plotted as a function of $E_{c.m.}$ is plotted for the dominant decay channel at highest value of angular momenta, shown in Fig. 2(a). It can be noticed that the lowering of barrier increases as $E_{c.m.}$ decreases for both the compound systems, which signifies the lower cross-sections at lower energy values. It also indicates that the lowering of barrier values (ΔV_B) required in case of 40Ca* is lesser than that of 42Ca* at all values of $E_{c.m.}$. Thus, the quantum tunneling of fragments/clusters in case of 40Ca* through the barrier is less hindered as compared to compound nucleus 42Ca*. Therefore, less hindrance threshold is observed in 40Ca* in comparison to 42Ca*, at lower energy values. Finally, the calculated fusion excitation values are plotted as function of $E_{c.m.}$ in Fig. 2(b). It can be observed that the calculated fusion excitation values are in agreement with the available experimental data. Also, it can be seen that the cross section values of 40Ca* are larger in comparison to 42Ca*. Also, it can be clearly noticed that the cross sections of 42Ca* (solid line) decrease very steeply at the lowest energies in contrast to 40Ca* (dotted line). These observations can be understood through the lower ΔV_B values of fragments/clusters from compound nucleus 40Ca* and possibly its double shell closure in comparison to that of compound nucleus 42Ca* which may lead to enhanced cross section values.

References